skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Seamless lateral graphene p–n junctions formed by selective in situ doping for high-performance photodetectors

Abstract

Lateral graphene p–n junctions are important since they constitute the core components in a variety of electronic/photonic systems. However, formation of lateral graphene p–n junctions with a controllable doping levels is still a great challenge due to the monolayer feature of graphene. Herein, by performing selective ion implantation and in situ growth by dynamic chemical vapor deposition, direct formation of seamless lateral graphene p–n junctions with spatial control and tunable doping is demonstrated. Uniform lattice substitution with heteroatoms is achieved in both the boron-doped and nitrogen-doped regions and photoelectrical assessment reveals that the seamless lateral p–n junctions exhibit a distinct photocurrent response under ambient conditions. As ion implantation is a standard technique in microelectronics, our study suggests a simple and effective strategy for mass production of graphene p–n junctions with batch capability and spatial controllability, which can be readily integrated into the production of graphene-based electronics and photonics.

Authors:
 [1];  [2];  [1];  [2];  [2];  [2];  [2];  [2];  [3]; ORCiD logo [3]; ORCiD logo [3];  [4]; ORCiD logo [5];  [2];  [2];  [2];  [2]
  1. Chinese Academy of Sciences (CAS), Beijing (China); Ningbo Univ. (China)
  2. Chinese Academy of Sciences (CAS), Beijing (China)
  3. Peking Univ., Beijing (China)
  4. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  5. City Univ. of Hong Kong (China)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC). Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1489971
Report Number(s):
LA-UR-18-31496
Journal ID: ISSN 2041-1723
Grant/Contract Number:  
89233218CNA000001
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 9; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Material Science

Citation Formats

Wang, Gang, Zhang, Miao, Chen, Da, Guo, Qinglei, Feng, Xuefei, Niu, Tianchao, Liu, Xiaosong, Li, Ang, Lai, Jiawei, Sun, Dong, Liao, Zhimin, Wang, Yongqiang, Chu, Paul K., Ding, Guqiao, Xie, Xiaoming, Di, Zengfeng, and Wang, Xi. Seamless lateral graphene p–n junctions formed by selective in situ doping for high-performance photodetectors. United States: N. p., 2018. Web. doi:10.1038/s41467-018-07555-6.
Wang, Gang, Zhang, Miao, Chen, Da, Guo, Qinglei, Feng, Xuefei, Niu, Tianchao, Liu, Xiaosong, Li, Ang, Lai, Jiawei, Sun, Dong, Liao, Zhimin, Wang, Yongqiang, Chu, Paul K., Ding, Guqiao, Xie, Xiaoming, Di, Zengfeng, & Wang, Xi. Seamless lateral graphene p–n junctions formed by selective in situ doping for high-performance photodetectors. United States. doi:10.1038/s41467-018-07555-6.
Wang, Gang, Zhang, Miao, Chen, Da, Guo, Qinglei, Feng, Xuefei, Niu, Tianchao, Liu, Xiaosong, Li, Ang, Lai, Jiawei, Sun, Dong, Liao, Zhimin, Wang, Yongqiang, Chu, Paul K., Ding, Guqiao, Xie, Xiaoming, Di, Zengfeng, and Wang, Xi. Wed . "Seamless lateral graphene p–n junctions formed by selective in situ doping for high-performance photodetectors". United States. doi:10.1038/s41467-018-07555-6. https://www.osti.gov/servlets/purl/1489971.
@article{osti_1489971,
title = {Seamless lateral graphene p–n junctions formed by selective in situ doping for high-performance photodetectors},
author = {Wang, Gang and Zhang, Miao and Chen, Da and Guo, Qinglei and Feng, Xuefei and Niu, Tianchao and Liu, Xiaosong and Li, Ang and Lai, Jiawei and Sun, Dong and Liao, Zhimin and Wang, Yongqiang and Chu, Paul K. and Ding, Guqiao and Xie, Xiaoming and Di, Zengfeng and Wang, Xi},
abstractNote = {Lateral graphene p–n junctions are important since they constitute the core components in a variety of electronic/photonic systems. However, formation of lateral graphene p–n junctions with a controllable doping levels is still a great challenge due to the monolayer feature of graphene. Herein, by performing selective ion implantation and in situ growth by dynamic chemical vapor deposition, direct formation of seamless lateral graphene p–n junctions with spatial control and tunable doping is demonstrated. Uniform lattice substitution with heteroatoms is achieved in both the boron-doped and nitrogen-doped regions and photoelectrical assessment reveals that the seamless lateral p–n junctions exhibit a distinct photocurrent response under ambient conditions. As ion implantation is a standard technique in microelectronics, our study suggests a simple and effective strategy for mass production of graphene p–n junctions with batch capability and spatial controllability, which can be readily integrated into the production of graphene-based electronics and photonics.},
doi = {10.1038/s41467-018-07555-6},
journal = {Nature Communications},
number = 1,
volume = 9,
place = {United States},
year = {2018},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: Characterization of the seamless lateral graphene p–n junction. a Schematic diagrams showing the synthesis process of the seamless lateral graphene p–n junctions. 1, 2, and 3 represent diffusion of Ni, Cu, and dopant (B or N) atoms, and 4 represents carbon atoms supplied by the decomposition of CH4.more » b Schematic diagram of the graphene photodetector array constructed on the seamless lateral graphene p–n junction. c A real image of the graphene photodetector array on the seamless lateral graphene p–n junction. The scale bar is 1 cm. d Pseudo-color SEM image of the seamless lateral graphene p–n junction device. The scale bar is 4 μm. e 2D peak map of the junction area of the lateral graphene p–n junction showing the B-doped graphene region (orange, B ion implantation using a fluence of 4 × 1016 atoms/cm2) and N-doped graphene region (green, N ion implantation with a fluence of 4 × 1016 atoms/cm2). The scale bar is 1 μm. f Raman spectra acquired from three different regions indicated in (e): (I) N-doped graphene portion (orange), (II) Junction location (blue), and (III) B-doped graphene region (red). g High-resolution XPS B-1s spectrum of the B-doped graphene film. h High-resolution XPS N-1s spectrum of the N-doped graphene film. EELS images of i, B-doped graphene and j, N-doped graphene« less

Save / Share:

Works referenced in this record:

A roadmap for graphene
journal, October 2012

  • Novoselov, K. S.; Fal′ko, V. I.; Colombo, L.
  • Nature, Vol. 490, Issue 7419
  • DOI: 10.1038/nature11458

Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage
journal, January 2015


Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems
journal, January 2015

  • Ferrari, Andrea C.; Bonaccorso, Francesco; Fal'ko, Vladimir
  • Nanoscale, Vol. 7, Issue 11
  • DOI: 10.1039/C4NR01600A

Hot Carrier-Assisted Intrinsic Photoresponse in Graphene
journal, October 2011


Electron optics with p-n junctions in ballistic graphene
journal, September 2016


Transport Measurements Across a Tunable Potential Barrier in Graphene
journal, June 2007


Electronic Transport and Quantum Hall Effect in Bipolar Graphene p n p Junctions
journal, October 2007


Gate-Activated Photoresponse in a Graphene p–n Junction
journal, October 2011

  • Lemme, Max C.; Koppens, Frank H. L.; Falk, Abram L.
  • Nano Letters, Vol. 11, Issue 10
  • DOI: 10.1021/nl2019068

Quantum Hall Effect in a Gate-Controlled p-n Junction of Graphene
journal, August 2007


Four-Terminal Magneto-Transport in Graphene p-n Junctions Created by Spatially Selective Doping
journal, May 2009

  • Lohmann, Timm; von Klitzing, Klaus; Smet, Jurgen H.
  • Nano Letters, Vol. 9, Issue 5
  • DOI: 10.1021/nl900203n

Detection of individual gas molecules adsorbed on graphene
journal, July 2007

  • Schedin, F.; Geim, A. K.; Morozov, S. V.
  • Nature Materials, Vol. 6, Issue 9, p. 652-655
  • DOI: 10.1038/nmat1967

Chemical Doping and Electron−Hole Conduction Asymmetry in Graphene Devices
journal, January 2009

  • Farmer, Damon B.; Golizadeh-Mojarad, Roksana; Perebeinos, Vasili
  • Nano Letters, Vol. 9, Issue 1
  • DOI: 10.1021/nl803214a

High Efficiency Graphene Solar Cells by Chemical Doping
journal, May 2012

  • Miao, Xiaochang; Tongay, Sefaattin; Petterson, Maureen K.
  • Nano Letters, Vol. 12, Issue 6
  • DOI: 10.1021/nl204414u

Controllable p-n Junction Formation in Monolayer Graphene Using Electrostatic Substrate Engineering
journal, November 2010

  • Chiu, Hsin-Ying; Perebeinos, Vasili; Lin, Yu-Ming
  • Nano Letters, Vol. 10, Issue 11
  • DOI: 10.1021/nl102756r

Flexible Multilevel Resistive Memory with Controlled Charge Trap B- and N-Doped Carbon Nanotubes
journal, April 2012

  • Hwang, Sun Kak; Lee, Ju Min; Kim, Seungjun
  • Nano Letters, Vol. 12, Issue 5
  • DOI: 10.1021/nl204039q

Building graphene p–n junctions for next-generation photodetection
journal, December 2015


Microwave Photodetection in an Ultraclean Suspended Bilayer Graphene p–n Junction
journal, October 2016


Solar Hydrogen Generation by Nanoscale p–n Junction of p -type Molybdenum Disulfide/ n -type Nitrogen-Doped Reduced Graphene Oxide
journal, May 2013

  • Meng, Fanke; Li, Jiangtian; Cushing, Scott K.
  • Journal of the American Chemical Society, Vol. 135, Issue 28
  • DOI: 10.1021/ja404851s

Creating and probing electron whispering-gallery modes in graphene
journal, May 2015


Photocurrent in graphene harnessed by tunable intrinsic plasmons
journal, June 2013

  • Freitag, Marcus; Low, Tony; Zhu, Wenjuan
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2951

Solar-energy conversion and light emission in an atomic monolayer p–n diode
journal, March 2014

  • Pospischil, Andreas; Furchi, Marco M.; Mueller, Thomas
  • Nature Nanotechnology, Vol. 9, Issue 4
  • DOI: 10.1038/nnano.2014.14

Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices
journal, July 2012

  • Haigh, S. J.; Gholinia, A.; Jalil, R.
  • Nature Materials, Vol. 11, Issue 9
  • DOI: 10.1038/nmat3386

Epitaxial growth of single-domain graphene on hexagonal boron nitride
journal, July 2013

  • Yang, Wei; Chen, Guorui; Shi, Zhiwen
  • Nature Materials, Vol. 12, Issue 9
  • DOI: 10.1038/nmat3695

Modulation-doped growth of mosaic graphene with single-crystalline p–n junctions for efficient photocurrent generation
journal, January 2012

  • Yan, Kai; Wu, Di; Peng, Hailin
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms2286

Ion Implantation of Graphene—Toward IC Compatible Technologies
journal, September 2013

  • Bangert, U.; Pierce, W.; Kepaptsoglou, D. M.
  • Nano Letters, Vol. 13, Issue 10
  • DOI: 10.1021/nl402812y

Achieving High-Quality Single-Atom Nitrogen Doping of Graphene/SiC(0001) by Ion Implantation and Subsequent Thermal Stabilization
journal, June 2014

  • Telychko, Mykola; Mutombo, Pingo; Ondráček, Martin
  • ACS Nano, Vol. 8, Issue 7
  • DOI: 10.1021/nn502438k

Nitrogen-Doped Graphene and Twisted Bilayer Graphene via Hyperthermal Ion Implantation with Depth Control
journal, February 2016


Ion-Irradiation-Induced Defects in Isotopically-Labeled Two Layered Graphene: Enhanced In-Situ Annealing of the Damage
journal, November 2012

  • Kalbac, Martin; Lehtinen, Ossi; Krasheninnikov, Arkady V.
  • Advanced Materials, Vol. 25, Issue 7
  • DOI: 10.1002/adma.201203807

Synthesis of Layer-Tunable Graphene: A Combined Kinetic Implantation and Thermal Ejection Approach
journal, May 2015

  • Wang, Gang; Zhang, Miao; Liu, Su
  • Advanced Functional Materials, Vol. 25, Issue 24
  • DOI: 10.1002/adfm.201500981

Band Gap Engineering of Chemical Vapor Deposited Graphene by in Situ BN Doping
journal, January 2013

  • Chang, Cheng-Kai; Kataria, Satender; Kuo, Chun-Chiang
  • ACS Nano, Vol. 7, Issue 2
  • DOI: 10.1021/nn3049158

Synthesis of N-Doped Graphene by Chemical Vapor Deposition and Its Electrical Properties
journal, May 2009

  • Wei, Dacheng; Liu, Yunqi; Wang, Yu
  • Nano Letters, Vol. 9, Issue 5
  • DOI: 10.1021/nl803279t

Free-standing graphene at atomic resolution
journal, September 2008

  • Gass, Mhairi H.; Bangert, Ursel; Bleloch, Andrew L.
  • Nature Nanotechnology, Vol. 3, Issue 11
  • DOI: 10.1038/nnano.2008.280

Multiwall Boron Carbonitride/Carbon Nanotube Junction and Its Rectification Behavior
journal, August 2007

  • Liao, Lei; Liu, Kaihui; Wang, Wenlong
  • Journal of the American Chemical Society, Vol. 129, Issue 31
  • DOI: 10.1021/ja072861e

An oxygen reduction electrocatalyst based on carbon nanotube–graphene complexes
journal, May 2012

  • Li, Yanguang; Zhou, Wu; Wang, Hailiang
  • Nature Nanotechnology, Vol. 7, Issue 6
  • DOI: 10.1038/nnano.2012.72

van der Waals Epitaxial Growth of Graphene on Sapphire by Chemical Vapor Deposition without a Metal Catalyst
journal, December 2012

  • Hwang, Jeonghyun; Kim, Moonkyung; Campbell, Dorr
  • ACS Nano, Vol. 7, Issue 1
  • DOI: 10.1021/nn305486x

The Influence of Strong Electron and Hole Doping on the Raman Intensity of Chemical Vapor-Deposition Graphene
journal, October 2010

  • Kalbac, Martin; Reina-Cecco, Alfonso; Farhat, Hootan
  • ACS Nano, Vol. 4, Issue 10
  • DOI: 10.1021/nn1010914

Nonadiabatic Kohn Anomaly in a Doped Graphene Monolayer
journal, December 2006


Nitrogen-Doped Graphene: Efficient Growth, Structure, and Electronic Properties
journal, December 2011

  • Usachov, D.; Vilkov, O.; Grüneis, A.
  • Nano Letters, Vol. 11, Issue 12
  • DOI: 10.1021/nl2031037

Epitaxial B-Graphene: Large-Scale Growth and Atomic Structure
journal, June 2015

  • Usachov, Dmitry Yu.; Fedorov, Alexander V.; Petukhov, Anatoly E.
  • ACS Nano, Vol. 9, Issue 7
  • DOI: 10.1021/acsnano.5b02322

Connecting Dopant Bond Type with Electronic Structure in N-Doped Graphene
journal, July 2012

  • Schiros, Theanne; Nordlund, Dennis; Pálová, Lucia
  • Nano Letters, Vol. 12, Issue 8
  • DOI: 10.1021/nl301409h

Visualizing Individual Nitrogen Dopants in Monolayer Graphene
journal, August 2011


Giant phonon-induced conductance in scanning tunnelling spectroscopy of gate-tunable graphene
journal, July 2008

  • Zhang, Yuanbo; Brar, Victor W.; Wang, Feng
  • Nature Physics, Vol. 4, Issue 8
  • DOI: 10.1038/nphys1022

Local Atomic and Electronic Structure of Boron Chemical Doping in Monolayer Graphene
journal, September 2013

  • Zhao, Liuyan; Levendorf, Mark; Goncher, Scott
  • Nano Letters, Vol. 13, Issue 10
  • DOI: 10.1021/nl401781d

Ultrasensitive gas detection of large-area boron-doped graphene
journal, November 2015

  • Lv, Ruitao; Chen, Gugang; Li, Qing
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 47
  • DOI: 10.1073/pnas.1505993112

Visualizing Local Doping Effects of Individual Water Clusters on Gold(111)-Supported Graphene
journal, February 2012

  • Cao, Peigen; Varghese, Joseph O.; Xu, Ke
  • Nano Letters, Vol. 12, Issue 3
  • DOI: 10.1021/nl2041673

Controllable N-Doping of Graphene
journal, December 2010

  • Guo, Beidou; Liu, Qian; Chen, Erdan
  • Nano Letters, Vol. 10, Issue 12
  • DOI: 10.1021/nl103079j

Large-Scale Growth and Characterizations of Nitrogen-Doped Monolayer Graphene Sheets
journal, April 2011

  • Jin, Zhong; Yao, Jun; Kittrell, Carter
  • ACS Nano, Vol. 5, Issue 5
  • DOI: 10.1021/nn200766e

Ultrafast graphene photodetector
journal, October 2009

  • Xia, Fengnian; Mueller, Thomas; Lin, Yu-ming
  • Nature Nanotechnology, Vol. 4, Issue 12, p. 839-843
  • DOI: 10.1038/nnano.2009.292

Graphene photodetectors for high-speed optical communications
journal, March 2010


Visualization of charge transport through Landau levels in graphene
journal, August 2010

  • Nazin, G.; Zhang, Y.; Zhang, L.
  • Nature Physics, Vol. 6, Issue 11
  • DOI: 10.1038/nphys1745

Synthesis of Nitrogen-Doped Graphene Using Embedded Carbon and Nitrogen Sources
journal, January 2011


High-performance graphene photodetector using interfacial gating
journal, January 2016


Focused-Laser-Enabled p–n Junctions in Graphene Field-Effect Transistors
journal, June 2013

  • Kim, Young Duck; Bae, Myung-Ho; Seo, Jung-Tak
  • ACS Nano, Vol. 7, Issue 7
  • DOI: 10.1021/nn402354j

High-Quality Graphene p−n Junctions via Resist-free Fabrication and Solution-Based Noncovalent Functionalization
journal, February 2011

  • Cheng, Hung-Chieh; Shiue, Ren-Jye; Tsai, Chia-Chang
  • ACS Nano, Vol. 5, Issue 3
  • DOI: 10.1021/nn103221v

Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current
journal, March 2015


Photoconductivity of biased graphene
journal, December 2012


Increased Responsivity of Suspended Graphene Photodetectors
journal, March 2013

  • Freitag, Marcus; Low, Tony; Avouris, Phaedon
  • Nano Letters, Vol. 13, Issue 4
  • DOI: 10.1021/nl4001037

Competing Mechanisms for Photocurrent Induced at the Monolayer-Multilayer Graphene Junction
journal, May 2018


High-quality infrared imaging with graphene photodetectors at room temperature
journal, January 2016


High photoresponsivity in an all-graphene p–n vertical junction photodetector
journal, February 2014

  • Kim, Chang Oh; Kim, Sung; Shin, Dong Hee
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4249

Tunable Graphene–Silicon Heterojunctions for Ultrasensitive Photodetection
journal, February 2013

  • An, Xiaohong; Liu, Fangze; Jung, Yung Joon
  • Nano Letters, Vol. 13, Issue 3
  • DOI: 10.1021/nl303682j

Monolayer Graphene/Germanium Schottky Junction As High-Performance Self-Driven Infrared Light Photodetector
journal, September 2013

  • Zeng, Long-Hui; Wang, Ming-Zheng; Hu, Han
  • ACS Applied Materials & Interfaces, Vol. 5, Issue 19
  • DOI: 10.1021/am4026505

    Works referencing / citing this record:

    Two‐dimensional heterostructure promoted infrared photodetection devices
    journal, July 2019

    • Rao, Gaofeng; Wang, Xuepeng; Wang, Yang
    • InfoMat, Vol. 1, Issue 3
    • DOI: 10.1002/inf2.12018

    Zero-Bias Visible to Near-Infrared Horizontal p-n-p TiO2 Nanotubes Doped Monolayer Graphene Photodetector
    journal, May 2019


    Two‐dimensional heterostructure promoted infrared photodetection devices
    journal, July 2019

    • Rao, Gaofeng; Wang, Xuepeng; Wang, Yang
    • InfoMat, Vol. 1, Issue 3
    • DOI: 10.1002/inf2.12018

    Zero-Bias Visible to Near-Infrared Horizontal p-n-p TiO2 Nanotubes Doped Monolayer Graphene Photodetector
    journal, May 2019


      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.