skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enhanced Water Desalination by Increasing the Electroconductivity of Carbon Powders for High-Performance Flow-Electrode Capacitive Deionization

Abstract

Flow-electrode capacitive deionization (FCDI) can be improved via enhanced charge transfer by increasing the flow-electrode (FE) conductivity. Since water is the main component of FE (>70%), the key to improving the electroconductivity lies in the properties of carbon materials. In this work, three types of carbon powders, i.e., activated carbon (AC), mesoporous carbon, and carbon nanotubes (CNTs), were employed in FEs to investigate the influence of powder properties on the FCDI performance. The morphology and structure of powders and electrochemical behavior and rheology of FEs were investigated to reveal the relationship between FE properties and desalination performance. Results show that, due to their unique electrosorption behavior, excellent conductivity, and enhanced conductivity through a bridging effect, CNT-based FE (carbon loading: 3 wt %) achieved the fastest (8.3 mg s–1 m–2) and the most stable desalination (charge efficiency: 93.3%). A faster desalination (13.2 mg s–1 m–2), due to significantly improved electroconductivity (13.2 times) with only a slight viscosity increase (1.1 times), was achieved by adding CNTs into 6.91 wt % AC-based FE for a 7.41 wt % total carbon concentration. This study highlights the importance of the intrinsic properties of carbon materials, especially electroconductivity, in promoting FCDI desalination performance.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3]; ORCiD logo [4]
  1. Georgia Inst. of Technology, Atlanta, GA (United States). School of Civil and Environmental Engineering; Chinese Academy of Sciences (CAS), Beijing (China). Inst. of Process Engineering, Division of Environment Technology and Engineering, Beijing Engineering Research Center of Process Pollution Control; Tianjin Univ., Tianjin (China). School of Chemical Engineering and Technology, National Engineering Research Center for Distillation Technology
  2. Georgia Inst. of Technology, Atlanta, GA (United States). School of Civil and Environmental Engineering
  3. Chinese Academy of Sciences (CAS), Beijing (China). Inst. of Process Engineering, Division of Environment Technology and Engineering, Beijing Engineering Research Center of Process Pollution Control
  4. Georgia Inst. of Technology, Atlanta, GA (United States). School of Civil and Environmental Engineering; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1489554
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
ACS Sustainable Chemistry & Engineering
Additional Journal Information:
Journal Volume: 7; Journal Issue: 1; Journal ID: ISSN 2168-0485
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE

Citation Formats

Tang, Kexin, Yiacoumi, Sotira, Li, Yuping, and Tsouris, Costas. Enhanced Water Desalination by Increasing the Electroconductivity of Carbon Powders for High-Performance Flow-Electrode Capacitive Deionization. United States: N. p., 2018. Web. doi:10.1021/acssuschemeng.8b04746.
Tang, Kexin, Yiacoumi, Sotira, Li, Yuping, & Tsouris, Costas. Enhanced Water Desalination by Increasing the Electroconductivity of Carbon Powders for High-Performance Flow-Electrode Capacitive Deionization. United States. doi:10.1021/acssuschemeng.8b04746.
Tang, Kexin, Yiacoumi, Sotira, Li, Yuping, and Tsouris, Costas. Mon . "Enhanced Water Desalination by Increasing the Electroconductivity of Carbon Powders for High-Performance Flow-Electrode Capacitive Deionization". United States. doi:10.1021/acssuschemeng.8b04746. https://www.osti.gov/servlets/purl/1489554.
@article{osti_1489554,
title = {Enhanced Water Desalination by Increasing the Electroconductivity of Carbon Powders for High-Performance Flow-Electrode Capacitive Deionization},
author = {Tang, Kexin and Yiacoumi, Sotira and Li, Yuping and Tsouris, Costas},
abstractNote = {Flow-electrode capacitive deionization (FCDI) can be improved via enhanced charge transfer by increasing the flow-electrode (FE) conductivity. Since water is the main component of FE (>70%), the key to improving the electroconductivity lies in the properties of carbon materials. In this work, three types of carbon powders, i.e., activated carbon (AC), mesoporous carbon, and carbon nanotubes (CNTs), were employed in FEs to investigate the influence of powder properties on the FCDI performance. The morphology and structure of powders and electrochemical behavior and rheology of FEs were investigated to reveal the relationship between FE properties and desalination performance. Results show that, due to their unique electrosorption behavior, excellent conductivity, and enhanced conductivity through a bridging effect, CNT-based FE (carbon loading: 3 wt %) achieved the fastest (8.3 mg s–1 m–2) and the most stable desalination (charge efficiency: 93.3%). A faster desalination (13.2 mg s–1 m–2), due to significantly improved electroconductivity (13.2 times) with only a slight viscosity increase (1.1 times), was achieved by adding CNTs into 6.91 wt % AC-based FE for a 7.41 wt % total carbon concentration. This study highlights the importance of the intrinsic properties of carbon materials, especially electroconductivity, in promoting FCDI desalination performance.},
doi = {10.1021/acssuschemeng.8b04746},
journal = {ACS Sustainable Chemistry & Engineering},
number = 1,
volume = 7,
place = {United States},
year = {2018},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share: