skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Precise control of alloying sites of bimetallic nanoclusters via surface motif exchange reaction

Abstract

Here, precise control of alloying sites has long been a challenging pursuit, yet little has been achieved for the atomic-level manipulation of metallic nanomaterials. Here we describe utilization of a surface motif exchange (SME) reaction to selectively replace the surface motifs of parent [Ag 44(SR) 30] 4– (SR = thiolate) nanoparticles (NPs), leading to bimetallic NPs with well-defined molecular formula and atomically-controlled alloying sites in protecting shell. A systematic mass (and tandem mass) spectrometry analysis suggests that the SME reaction is an atomically precise displacement of SR–Ag(I)–SR-protecting modules of Ag NPs by the incoming SR–Au(I)–SR modules, giving rise to a core-shell [Ag 32@Au 12(SR) 30] 4–. Theoretical calculation suggests that the thermodynamically less favorable core-shell Ag@Au nanostructure is kinetically stabilized by the intermediate Ag 20 shell, preventing inward diffusion of the surface Au atoms. The delicate SME reaction opens a door to precisely control the alloying sites in the protecting shell of bimetallic NPs with broad utility.

Authors:
ORCiD logo [1];  [2];  [3]; ORCiD logo [1];  [3];  [4]; ORCiD logo [1]
  1. National Univ. of Singapore (Singapore). Dept. of Chemical and Biomolecular Engineering
  2. National Univ. of Singapore (Singapore). Dept. of Chemical and Biomolecular Engineering; Chinese Academy of Sciences (CAS), Beijing (China). State Key Lab. of Multiphase Complex Systems
  3. Univ. of California, Riverside, CA (United States). Dept. of Chemistry
  4. Chinese Academy of Sciences (CAS), Beijing (China). State Key Lab. of Multiphase Complex Systems
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Chemical Sciences, Geosciences & Biosciences Division
OSTI Identifier:
1489404
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 8; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Yao, Qiaofeng, Feng, Yan, Fung, Victor, Yu, Yong, Jiang, De-en, Yang, Jun, and Xie, Jianping. Precise control of alloying sites of bimetallic nanoclusters via surface motif exchange reaction. United States: N. p., 2017. Web. doi:10.1038/s41467-017-01736-5.
Yao, Qiaofeng, Feng, Yan, Fung, Victor, Yu, Yong, Jiang, De-en, Yang, Jun, & Xie, Jianping. Precise control of alloying sites of bimetallic nanoclusters via surface motif exchange reaction. United States. doi:10.1038/s41467-017-01736-5.
Yao, Qiaofeng, Feng, Yan, Fung, Victor, Yu, Yong, Jiang, De-en, Yang, Jun, and Xie, Jianping. Thu . "Precise control of alloying sites of bimetallic nanoclusters via surface motif exchange reaction". United States. doi:10.1038/s41467-017-01736-5. https://www.osti.gov/servlets/purl/1489404.
@article{osti_1489404,
title = {Precise control of alloying sites of bimetallic nanoclusters via surface motif exchange reaction},
author = {Yao, Qiaofeng and Feng, Yan and Fung, Victor and Yu, Yong and Jiang, De-en and Yang, Jun and Xie, Jianping},
abstractNote = {Here, precise control of alloying sites has long been a challenging pursuit, yet little has been achieved for the atomic-level manipulation of metallic nanomaterials. Here we describe utilization of a surface motif exchange (SME) reaction to selectively replace the surface motifs of parent [Ag44(SR)30]4– (SR = thiolate) nanoparticles (NPs), leading to bimetallic NPs with well-defined molecular formula and atomically-controlled alloying sites in protecting shell. A systematic mass (and tandem mass) spectrometry analysis suggests that the SME reaction is an atomically precise displacement of SR–Ag(I)–SR-protecting modules of Ag NPs by the incoming SR–Au(I)–SR modules, giving rise to a core-shell [Ag32@Au12(SR)30]4–. Theoretical calculation suggests that the thermodynamically less favorable core-shell Ag@Au nanostructure is kinetically stabilized by the intermediate Ag20 shell, preventing inward diffusion of the surface Au atoms. The delicate SME reaction opens a door to precisely control the alloying sites in the protecting shell of bimetallic NPs with broad utility.},
doi = {10.1038/s41467-017-01736-5},
journal = {Nature Communications},
number = 1,
volume = 8,
place = {United States},
year = {2017},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 49 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1 : Synthesis of Ag32@Au12 from Ag44 nanoclusters. a, c Ultraviolet–visible absorption and b, d electrospray ionization mass spectra of a, b [Ag44(SR)30] 4− and c, d [Ag32Au12(SR)30−bClb]4− with b= 0–2 and SR denoting thiolate ligand. Insets in a, c are polyacrylamide gel electrophoresis results (left) and digital photosmore » (right) of the corresponding nanoclusters. The zero absorbance is indicated by the dotted lines in a, c. The left inset in b shows the experimental (black line) and simulated (magenta line) isotope patterns of [Ag44(SR)30]4−, and the right inset illustrates the crystal structure of [Ag44(SR)30]4− (drawn according to the reported structure; color legend: Ag (gray/light blue/purple); S (orange); C, O, and H are omitted for clarity). The left inset in d is the zoom-in mass spectrum of [Ag32Au12(SR)30-bClb]4−, and the right inset shows the experimental (black line) and simulated (magenta line) isotope patterns of [Ag32Au12(SR)30]4−« less

Save / Share:

Works referenced in this record:

A New Crystal Structure of Au 36 with a Au 14 Kernel Cocapped by Thiolate and Chloride
journal, August 2015

  • Yang, Sha; Chai, Jinsong; Song, Yongbo
  • Journal of the American Chemical Society, Vol. 137, Issue 32
  • DOI: 10.1021/jacs.5b06235

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Tandem Mass Spectrometry of Thiolate-Protected Au Nanoparticles Na x Au 25 (SC 2 H 4 Ph) 18− y (S(C 2 H 4 O) 5 CH 3 ) y
journal, September 2009

  • Fields-Zinna, Christina A.; Sampson, Jason S.; Crowe, Matthew C.
  • Journal of the American Chemical Society, Vol. 131, Issue 38
  • DOI: 10.1021/ja905787y

[Ag 25 (SR) 18 ] : The “Golden” Silver Nanoparticle
journal, September 2015

  • Joshi, Chakra P.; Bootharaju, Megalamane S.; Alhilaly, Mohammad J.
  • Journal of the American Chemical Society, Vol. 137, Issue 36
  • DOI: 10.1021/jacs.5b07088

Recent advances in the synthesis and catalytic applications of ligand-protected, atomically precise metal nanoclusters
journal, September 2016


Nonscalable Oxidation Catalysis of Gold Clusters
journal, December 2013

  • Yamazoe, Seiji; Koyasu, Kiichirou; Tsukuda, Tatsuya
  • Accounts of Chemical Research, Vol. 47, Issue 3
  • DOI: 10.1021/ar400209a

Projector augmented-wave method
journal, December 1994


Counterion-Assisted Shaping of Nanocluster Supracrystals
journal, November 2014

  • Yao, Qiaofeng; Yu, Yue; Yuan, Xun
  • Angewandte Chemie International Edition, Vol. 54, Issue 1
  • DOI: 10.1002/anie.201408675

Hierarchy of bond stiffnesses within icosahedral-based gold clusters protected by thiolates
journal, January 2016

  • Yamazoe, Seiji; Takano, Shinjiro; Kurashige, Wataru
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10414

Recent Progress in the Functionalization Methods of Thiolate-Protected Gold Clusters
journal, November 2014

  • Kurashige, Wataru; Niihori, Yoshiki; Sharma, Sachil
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 23
  • DOI: 10.1021/jz501941p

Identification of a Highly Luminescent Au 22 (SG) 18 Nanocluster
journal, January 2014

  • Yu, Yong; Luo, Zhentao; Chevrier, Daniel M.
  • Journal of the American Chemical Society, Vol. 136, Issue 4
  • DOI: 10.1021/ja411643u

From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Research Update: Interfacing ultrasmall metal nanoclusters with biological systems
journal, May 2017

  • Shang, Li; Nienhaus, G. Ulrich
  • APL Materials, Vol. 5, Issue 5
  • DOI: 10.1063/1.4974514

Adding Two Active Silver Atoms on Au 25 Nanoparticle
journal, January 2015

  • Yao, Chuanhao; Chen, Jishi; Li, Man-Bo
  • Nano Letters, Vol. 15, Issue 2
  • DOI: 10.1021/nl504477t

The surface structure of silver-coated gold nanocrystals and its influence on shape control
journal, July 2015

  • Padmos, J. Daniel; Personick, Michelle L.; Tang, Qing
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8664

Synthesis of Highly Fluorescent Gold Nanoparticles for Sensing Mercury(II)
journal, September 2007

  • Huang, Chih-Ching; Yang, Zusing; Lee, Kun-Hong
  • Angewandte Chemie International Edition, Vol. 46, Issue 36
  • DOI: 10.1002/anie.200700803

Metal-Cluster-Sensitized Solar Cells. A New Class of Thiolated Gold Sensitizers Delivering Efficiency Greater Than 2%
journal, June 2013

  • Chen, Yong-Siou; Choi, Hyunbong; Kamat, Prashant V.
  • Journal of the American Chemical Society, Vol. 135, Issue 24
  • DOI: 10.1021/ja403807f

Templated Atom-Precise Galvanic Synthesis and Structure Elucidation of a [Ag 24 Au(SR) 18 ] Nanocluster
journal, November 2015

  • Bootharaju, Megalamane S.; Joshi, Chakra P.; Parida, Manas R.
  • Angewandte Chemie International Edition, Vol. 55, Issue 3
  • DOI: 10.1002/anie.201509381

Ultrastable silver nanoparticles
journal, September 2013

  • Desireddy, Anil; Conn, Brian E.; Guo, Jingshu
  • Nature, Vol. 501, Issue 7467
  • DOI: 10.1038/nature12523

Synthesis of Out-of-Substrate Au-Ag Nanoplates with Enhanced Stability for Catalysis
journal, September 2009

  • Sun, Yugang; Lei, Changhui
  • Angewandte Chemie International Edition, Vol. 48, Issue 37
  • DOI: 10.1002/anie.200902305

First enantioseparation and circular dichroism spectra of Au38 clusters protected by achiral ligands
journal, January 2012

  • Dolamic, Igor; Knoppe, Stefan; Dass, Amala
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms1802

Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities
journal, September 2016


A metal exchange method for thiolate-protected tri-metal M 1 Ag x Au 24−x (SR) 18 0 (M = Cd/Hg) nanoclusters
journal, January 2015


Chirality in Thiolate-Protected Gold Clusters
journal, February 2014

  • Knoppe, Stefan; Bürgi, Thomas
  • Accounts of Chemical Research, Vol. 47, Issue 4
  • DOI: 10.1021/ar400295d

Interconversion between Superatomic 6-Electron and 8-Electron Configurations of M@Au 24 (SR) 18 Clusters (M = Pd, Pt)
journal, August 2015

  • Kwak, Kyuju; Tang, Qing; Kim, Minseok
  • Journal of the American Chemical Society, Vol. 137, Issue 33
  • DOI: 10.1021/jacs.5b06946

Doping-Induced Anisotropic Self-Assembly of Silver Icosahedra in [Pt 2 Ag 23 Cl 7 (PPh 3 ) 10 ] Nanoclusters
journal, January 2017

  • Bootharaju, Megalamane S.; Kozlov, Sergey M.; Cao, Zhen
  • Journal of the American Chemical Society, Vol. 139, Issue 3
  • DOI: 10.1021/jacs.6b11875

Templated synthesis of nanostructured materials
journal, January 2013

  • Liu, Yiding; Goebl, James; Yin, Yadong
  • Chem. Soc. Rev., Vol. 42, Issue 7
  • DOI: 10.1039/C2CS35369E

Isolation and Tandem Mass Spectrometric Identification of a Stable Monolayer Protected Silver–Palladium Alloy Cluster
journal, October 2014

  • Sarkar, Sreya; Chakraborty, Indranath; Panwar, Manoj Kumar
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 21
  • DOI: 10.1021/jz5019509

Chloride-Promoted Formation of a Bimetallic Nanocluster Au 80 Ag 30 and the Total Structure Determination
journal, June 2016

  • Zeng, Jiu-Lian; Guan, Zong-Jie; Du, Yang
  • Journal of the American Chemical Society, Vol. 138, Issue 25
  • DOI: 10.1021/jacs.6b04471

Structural Basis for Ligand Exchange on Au 25 (SR) 18
journal, June 2014

  • Ni, Thomas W.; Tofanelli, Marcus A.; Phillips, Billy D.
  • Inorganic Chemistry, Vol. 53, Issue 13
  • DOI: 10.1021/ic5010819

Site-Specific Growth of Au–Pd Alloy Horns on Au Nanorods: A Platform for Highly Sensitive Monitoring of Catalytic Reactions by Surface Enhancement Raman Spectroscopy
journal, May 2013

  • Huang, Jianfeng; Zhu, Yihan; Lin, Ming
  • Journal of the American Chemical Society, Vol. 135, Issue 23
  • DOI: 10.1021/ja4004602

X-ray Crystal Structure and Theoretical Analysis of Au 25– x Ag x (SCH 2 CH 2 Ph) 18 Alloy
journal, January 2014

  • Kumara, Chanaka; Aikens, Christine M.; Dass, Amala
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 3
  • DOI: 10.1021/jz402441d

Metal Exchange Method Using Au 25 Nanoclusters as Templates for Alloy Nanoclusters with Atomic Precision
journal, March 2015

  • Wang, Shuxin; Song, Yongbo; Jin, Shan
  • Journal of the American Chemical Society, Vol. 137, Issue 12
  • DOI: 10.1021/ja511635g

Dual-phase nanostructuring as a route to high-strength magnesium alloys
journal, April 2017


Highly Fluorescent Noble-Metal Quantum Dots
journal, May 2007


Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries
journal, January 2012

  • Lu, Yizhong; Chen, Wei
  • Chemical Society Reviews, Vol. 41, Issue 9
  • DOI: 10.1039/c2cs15325d

Total Structure and Electronic Structure Analysis of Doped Thiolated Silver [MAg 24 (SR) 18 ] 2– (M = Pd, Pt) Clusters
journal, September 2015

  • Yan, Juanzhu; Su, Haifeng; Yang, Huayan
  • Journal of the American Chemical Society, Vol. 137, Issue 37
  • DOI: 10.1021/jacs.5b07186

Precise synthesis, functionalization and application of thiolate-protected gold clusters
journal, August 2016

  • Kurashige, Wataru; Niihori, Yoshiki; Sharma, Sachil
  • Coordination Chemistry Reviews, Vol. 320-321
  • DOI: 10.1016/j.ccr.2016.02.013

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Atomically Precise Gold Nanoclusters as New Model Catalysts
journal, March 2013

  • Li, Gao; Jin, Rongchao
  • Accounts of Chemical Research, Vol. 46, Issue 8
  • DOI: 10.1021/ar300213z

Atomically Precise Alkynyl-Protected Metal Nanoclusters as a Model Catalyst: Observation of Promoting Effect of Surface Ligands on Catalysis by Metal Nanoparticles
journal, March 2016

  • Wang, Yu; Wan, Xian-Kai; Ren, Liting
  • Journal of the American Chemical Society, Vol. 138, Issue 10
  • DOI: 10.1021/jacs.5b12730

Mass Spectrometry of Ligand Exchange Chelation of the Nanoparticle [Au 25 (SCH 2 CH 2 C 6 H 5 ) 18 ] 1− by CH 3 C 6 H 3 (SH) 2
journal, December 2010

  • Fields-Zinna, Christina A.; Parker, Joseph F.; Murray, Royce W.
  • Journal of the American Chemical Society, Vol. 132, Issue 48
  • DOI: 10.1021/ja106243g

Antimicrobial Cluster Bombs: Silver Nanoclusters Packed with Daptomycin
journal, July 2016


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications
journal, August 2011


Correlating the Crystal Structure of A Thiol-Protected Au25 Cluster and Optical Properties
journal, May 2008

  • Zhu, Manzhou; Aikens, Christine M.; Hollander, Frederick J.
  • Journal of the American Chemical Society, Vol. 130, Issue 18, p. 5883-5885
  • DOI: 10.1021/ja801173r

Quantum Mechanical Studies of Large Metal, Metal Oxide, and Metal Chalcogenide Nanoparticles and Clusters
journal, April 2015

  • Fernando, Amendra; Weerawardene, K. L. Dimuthu M.; Karimova, Natalia V.
  • Chemical Reviews, Vol. 115, Issue 12
  • DOI: 10.1021/cr500506r

Luminescent Gold Nanoparticles with Size-Independent Emission
journal, June 2016

  • Liu, Jinbin; Duchesne, Paul N.; Yu, Mengxiao
  • Angewandte Chemie International Edition, Vol. 55, Issue 31
  • DOI: 10.1002/anie.201602795

Glutathione-Capped Gold Nanoclusters as Photosensitizers. Visible Light-Induced Hydrogen Generation in Neutral Water
journal, April 2014

  • Chen, Yong-Siou; Kamat, Prashant V.
  • Journal of the American Chemical Society, Vol. 136, Issue 16
  • DOI: 10.1021/ja5017365

Developing luminescent silver nanodots for biological applications
journal, January 2012

  • Choi, Sungmoon; Dickson, Robert M.; Yu, Junhua
  • Chem. Soc. Rev., Vol. 41, Issue 5
  • DOI: 10.1039/C1CS15226B

Tuning the electronic structure of thiolate-protected 25-atom clusters by co-substitution with metals having different preferential sites
journal, January 2016

  • Sharma, Sachil; Yamazoe, Seiji; Ono, Tasuku
  • Dalton Transactions, Vol. 45, Issue 45
  • DOI: 10.1039/C6DT03214A

Ligand Exchange Reactions in Thiolate-Protected Au 25 Nanoclusters with Selenolates or Tellurolates: Preferential Exchange Sites and Effects on Electronic Structure
journal, November 2016

  • Hossain, Sakiat; Kurashige, Wataru; Wakayama, Shota
  • The Journal of Physical Chemistry C, Vol. 120, Issue 45
  • DOI: 10.1021/acs.jpcc.6b08636

Size-Dependent Excited State Behavior of Glutathione-Capped Gold Clusters and Their Light-Harvesting Capacity
journal, July 2014

  • Stamplecoskie, Kevin G.; Kamat, Prashant V.
  • Journal of the American Chemical Society, Vol. 136, Issue 31
  • DOI: 10.1021/ja505361n

Structure of a Thiol Monolayer-Protected Gold Nanoparticle at 1.1 A Resolution
journal, October 2007


Neat and Complete: Thiolate-Ligand Exchange on a Silver Molecular Nanoparticle
journal, October 2014

  • AbdulHalim, Lina G.; Kothalawala, Nuwan; Sinatra, Lutfan
  • Journal of the American Chemical Society, Vol. 136, Issue 45
  • DOI: 10.1021/ja508860b

A 200-fold Quantum Yield Boost in the Photoluminescence of Silver-Doped Ag x Au 25− x Nanoclusters: The 13 th Silver Atom Matters
journal, January 2014

  • Wang, Shuxin; Meng, Xiangming; Das, Anindita
  • Angewandte Chemie International Edition, Vol. 53, Issue 9
  • DOI: 10.1002/anie.201307480

Ligand Exchange Mechanism on Thiolate Monolayer Protected Au 25 (SR) 18 Nanoclusters
journal, August 2015

  • Fernando, Amendra; Aikens, Christine M.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 34
  • DOI: 10.1021/acs.jpcc.5b06833

Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications
journal, January 2013

  • You, Hongjun; Yang, Shengchun; Ding, Bingjun
  • Chem. Soc. Rev., Vol. 42, Issue 7
  • DOI: 10.1039/C2CS35319A

An Intermetallic Au 24 Ag 20 Superatom Nanocluster Stabilized by Labile Ligands
journal, March 2015

  • Wang, Yu; Su, Haifeng; Xu, Chaofa
  • Journal of the American Chemical Society, Vol. 137, Issue 13
  • DOI: 10.1021/jacs.5b01232

Luminescent Metal Nanoclusters with Aggregation-Induced Emission
journal, February 2016

  • Goswami, Nirmal; Yao, Qiaofeng; Luo, Zhentao
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 6
  • DOI: 10.1021/acs.jpclett.5b02765

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.