skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on December 7, 2019

Title: Techno-economic analysis of jet-fuel production from biorefinery waste lignin

Abstract

Utilizing lignin feedstock along with cellulosic ethanol for the production of high-energy-density jet fuel offers a significant opportunity to enhance the overall operation efficiency, carbon conversion efficiency, economic viability, and sustainability of biofuel and chemical production. A patented catalytic process to produce lignin-substructure-based hydrocarbons in the jet-fuel range from lignin was developed. Comprehensive techno-economic analysis of this process was conducted through process simulation in this study. The discounted cash flow rate of return (DCFROR) method was used to evaluate a 2000 dry metric ton/day lignocellulosic ethanol biorefinery with the co-production of lignin jet fuel. The minimum selling price of lignin jet fuel at a 10% discount rate was estimated to be in the range of $6.35-$1.76/gal depending on the lignin and conversion rate and capacity. With a production capacity of 1.5-16.6 million gallon jet fuel per year, capital costs ranged from $38.0 to $39.4 million. On the whole, the co-production of jet fuel from lignin improved the overall economic viability of an integrated biorefinery process for corn ethanol production by raising co-product revenue from jet fuels.

Authors:
 [1];  [2]; ORCiD logo [1]
  1. Washington State Univ., Pullman, WA (United States)
  2. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Bioenergy Technologies Office (EE-3B)
OSTI Identifier:
1489324
Alternate Identifier(s):
OSTI ID: 1484958
Report Number(s):
NREL/JA-5100-73018
Journal ID: ISSN 1932-104X
Grant/Contract Number:  
AC36-08GO28308; AC36‐08GO28308
Resource Type:
Accepted Manuscript
Journal Name:
Biofuels, Bioproducts & Biorefining
Additional Journal Information:
Journal Volume: 13; Journal Issue: 3; Journal ID: ISSN 1932-104X
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
09 BIOMASS FUELS; techno-economic analysis; biomass; lignin; jet fuel; ethanol biorefinery

Citation Formats

Shen, Rongchun, Tao, Ling, and Yang, Bin. Techno-economic analysis of jet-fuel production from biorefinery waste lignin. United States: N. p., 2018. Web. doi:10.1002/bbb.1952.
Shen, Rongchun, Tao, Ling, & Yang, Bin. Techno-economic analysis of jet-fuel production from biorefinery waste lignin. United States. doi:10.1002/bbb.1952.
Shen, Rongchun, Tao, Ling, and Yang, Bin. Fri . "Techno-economic analysis of jet-fuel production from biorefinery waste lignin". United States. doi:10.1002/bbb.1952.
@article{osti_1489324,
title = {Techno-economic analysis of jet-fuel production from biorefinery waste lignin},
author = {Shen, Rongchun and Tao, Ling and Yang, Bin},
abstractNote = {Utilizing lignin feedstock along with cellulosic ethanol for the production of high-energy-density jet fuel offers a significant opportunity to enhance the overall operation efficiency, carbon conversion efficiency, economic viability, and sustainability of biofuel and chemical production. A patented catalytic process to produce lignin-substructure-based hydrocarbons in the jet-fuel range from lignin was developed. Comprehensive techno-economic analysis of this process was conducted through process simulation in this study. The discounted cash flow rate of return (DCFROR) method was used to evaluate a 2000 dry metric ton/day lignocellulosic ethanol biorefinery with the co-production of lignin jet fuel. The minimum selling price of lignin jet fuel at a 10% discount rate was estimated to be in the range of $6.35-$1.76/gal depending on the lignin and conversion rate and capacity. With a production capacity of 1.5-16.6 million gallon jet fuel per year, capital costs ranged from $38.0 to $39.4 million. On the whole, the co-production of jet fuel from lignin improved the overall economic viability of an integrated biorefinery process for corn ethanol production by raising co-product revenue from jet fuels.},
doi = {10.1002/bbb.1952},
journal = {Biofuels, Bioproducts & Biorefining},
number = 3,
volume = 13,
place = {United States},
year = {2018},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on December 7, 2019
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Lignin Depolymerization and Conversion A Review of Thermochemical Methods
journal, November 2010

  • Pandey, M. P.; Kim, C. S.
  • Chemical Engineering & Technology, Vol. 34, Issue 1, p. 29-41
  • DOI: 10.1002/ceat.201000270

Lignin valorization through integrated biological funneling and chemical catalysis
journal, August 2014

  • Linger, J. G.; Vardon, D. R.; Guarnieri, M. T.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 33, p. 12013-12018
  • DOI: 10.1073/pnas.1410657111

Co-ordination network for lignin—standardisation, production and applications adapted to market requirements (EUROLIGNIN)
journal, September 2004


Lignin depolymerization (LDP) in alcohol over nickel-based catalysts via a fragmentation–hydrogenolysis process
journal, January 2013

  • Song, Qi; Wang, Feng; Cai, Jiaying
  • Energy & Environmental Science, Vol. 6, Issue 3, p. 994-1007
  • DOI: 10.1039/c2ee23741e

Lignin-based carbon fibers for composite fiber applications
journal, January 2002


Lignin Valorization: Improving Lignin Processing in the Biorefinery
journal, May 2014

  • Ragauskas, A. J.; Beckham, G. T.; Biddy, M. J.
  • Science, Vol. 344, Issue 6185, p. 1246843-1246843
  • DOI: 10.1126/science.1246843

Formic-acid-induced depolymerization of oxidized lignin to aromatics
journal, November 2014

  • Rahimi, Alireza; Ulbrich, Arne; Coon, Joshua J.
  • Nature, Vol. 515, Issue 7526, p. 249-252
  • DOI: 10.1038/nature13867

Cleavage and hydrodeoxygenation (HDO) of C–O bonds relevant to lignin conversion using Pd/Zn synergistic catalysis
journal, January 2013

  • Parsell, Trenton H.; Owen, Benjamin C.; Klein, Ian
  • Chem. Sci., Vol. 4, Issue 2, p. 806-813
  • DOI: 10.1039/C2SC21657D

Lignin depolymerisation strategies: towards valuable chemicals and fuels
journal, January 2014

  • Xu, Chunping; Arancon, Rick Arneil D.; Labidi, Jalel
  • Chemical Society Reviews, Vol. 43, Issue 22, p. 7485-7500
  • DOI: 10.1039/C4CS00235K