skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Unitary entanglement construction in hierarchical networks

Authors:
; ; ; ; ;
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1488894
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Physical Review A
Additional Journal Information:
Journal Name: Physical Review A Journal Volume: 98 Journal Issue: 6; Journal ID: ISSN 2469-9926
Publisher:
American Physical Society
Country of Publication:
United States
Language:
English

Citation Formats

Bapat, Aniruddha, Eldredge, Zachary, Garrison, James R., Deshpande, Abhinav, Chong, Frederic T., and Gorshkov, Alexey V. Unitary entanglement construction in hierarchical networks. United States: N. p., 2018. Web. doi:10.1103/PhysRevA.98.062328.
Bapat, Aniruddha, Eldredge, Zachary, Garrison, James R., Deshpande, Abhinav, Chong, Frederic T., & Gorshkov, Alexey V. Unitary entanglement construction in hierarchical networks. United States. doi:10.1103/PhysRevA.98.062328.
Bapat, Aniruddha, Eldredge, Zachary, Garrison, James R., Deshpande, Abhinav, Chong, Frederic T., and Gorshkov, Alexey V. Wed . "Unitary entanglement construction in hierarchical networks". United States. doi:10.1103/PhysRevA.98.062328.
@article{osti_1488894,
title = {Unitary entanglement construction in hierarchical networks},
author = {Bapat, Aniruddha and Eldredge, Zachary and Garrison, James R. and Deshpande, Abhinav and Chong, Frederic T. and Gorshkov, Alexey V.},
abstractNote = {},
doi = {10.1103/PhysRevA.98.062328},
journal = {Physical Review A},
number = 6,
volume = 98,
place = {United States},
year = {2018},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1103/PhysRevA.98.062328

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs
journal, January 1998


ProjectQ: an open source software framework for quantum computing
journal, January 2018


Entanglement Percolation in Quantum Complex Networks
journal, December 2009


Growth of graph states in quantum networks
journal, October 2012


Hyperbolic geometry of complex networks
journal, September 2010


Entanglement percolation in quantum networks
journal, February 2007

  • Acín, Antonio; Cirac, J. Ignacio; Lewenstein, Maciej
  • Nature Physics, Vol. 3, Issue 4
  • DOI: 10.1038/nphys549

Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication
journal, December 1998


Fast quantum modular exponentiation
journal, May 2005


Percolation, Renormalization, and Quantum Computing with Nondeterministic Gates
journal, September 2007


Experimental comparison of two quantum computing architectures
journal, March 2017

  • Linke, Norbert M.; Maslov, Dmitri; Roetteler, Martin
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 13
  • DOI: 10.1073/pnas.1618020114

Limited-path-length entanglement percolation in quantum complex networks
journal, March 2011


Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects
journal, February 2014


Graphs of diameter 3 with the minimum number of edges
journal, December 1990


Balanced Graph Partitioning
journal, October 2006


Quantum Circuit Placement
journal, April 2008

  • Maslov, Dmitri; Falconer, Sean M.; Mosca, Michele
  • IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 27, Issue 4
  • DOI: 10.1109/TCAD.2008.917562

Scaling the Ion Trap Quantum Processor
journal, March 2013


Optimal path for a quantum teleportation protocol in entangled networks
journal, January 2012


On the Hyperbolicity of Small-World and Treelike Random Graphs
journal, October 2013


Statistical mechanics of complex networks
journal, January 2002


Fat-trees: Universal networks for hardware-efficient supercomputing
journal, October 1985


Collective dynamics of ‘small-world’ networks
journal, June 1998

  • Watts, Duncan J.; Strogatz, Steven H.
  • Nature, Vol. 393, Issue 6684
  • DOI: 10.1038/30918

Layout Optimization for Quantum Circuits with Linear Nearest Neighbor Architectures
journal, July 2016


Arithmetic on a distributed-memory quantum multicomputer
journal, January 2008

  • Meter, Rodney Van; Munro, W. J.; Nemoto, Kae
  • ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, Issue 4
  • DOI: 10.1145/1324177.1324179

The number of linear, directed, rooted, and connected graphs
journal, February 1955


Colloquium : Quantum networks with trapped ions
journal, April 2010


Lieb-Robinson Bounds and the Generation of Correlations and Topological Quantum Order
journal, July 2006


Distribution of entanglement in large-scale quantum networks
journal, September 2013


Rank-width and vertex-minors
journal, September 2005


Deterministic quantum state transfer and remote entanglement using microwave photons
journal, June 2018


The hierarchical product of graphs
journal, January 2009


Additive Spanners and Distance and Routing Labeling Schemes for Hyperbolic Graphs
journal, December 2010


Emergence of Scaling in Random Networks
journal, October 1999


Optimal frequency measurements with maximally correlated states
journal, December 1996


Optimal and secure measurement protocols for quantum sensor networks
journal, April 2018


On Moore Graphs with Diameters 2 and 3
journal, November 1960

  • Hoffman, A. J.; Singleton, R. R.
  • IBM Journal of Research and Development, Vol. 4, Issue 5
  • DOI: 10.1147/rd.45.0497

Multilayer microwave integrated quantum circuits for scalable quantum computing
journal, February 2016

  • Brecht, Teresa; Pfaff, Wolfgang; Wang, Chen
  • npj Quantum Information, Vol. 2, Issue 1
  • DOI: 10.1038/npjqi.2016.2

Fast Quantum State Transfer and Entanglement Renormalization Using Long-Range Interactions
journal, October 2017


A new graph product and its spectrum
journal, February 1978

  • Godsil, C. D.; McKay, B. D.
  • Bulletin of the Australian Mathematical Society, Vol. 18, Issue 1
  • DOI: 10.1017/S0004972700007760

Superconducting Circuits for Quantum Information: An Outlook
journal, March 2013


Quantum random networks
journal, May 2010

  • Perseguers, S.; Lewenstein, M.; Acín, A.
  • Nature Physics, Vol. 6, Issue 7
  • DOI: 10.1038/nphys1665

Sustaining the Internet with hyperbolic mapping
journal, September 2010

  • Boguñá, Marián; Papadopoulos, Fragkiskos; Krioukov, Dmitri
  • Nature Communications, Vol. 1, Issue 1
  • DOI: 10.1038/ncomms1063

<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2005-01-01">January 2005</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Hoyer, Peter; Spalek, Robert</span> </li> <li> Theory of Computing, Vol. 1, Issue 1</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.4086/toc.2005.v001a005" class="text-muted" target="_blank" rel="noopener noreferrer">10.4086/toc.2005.v001a005<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div></div> <div class="pagination-container small"> <a class="pure-button prev page" href="#" rel="prev"><span class="fa fa-angle-left"></span></a><ul class="pagination d-inline-block" style="padding-left:.2em;"></ul><a class="pure-button next page" href="#" rel="next"><span class="fa fa-angle-right"></span></a> </div> </div> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="*"><span class="fa fa-angle-right"></span> All References</a></li> <li class="small" style="margin-left:.75em; text-transform:capitalize;"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="journal"><span class="fa fa-angle-right"></span> journal<small class="text-muted"> (42)</small></a></li> </ul> <div style="margin-top:2em;"> <form class="pure-form small text-muted reference-search"> <label for="reference-search-text" class="sr-only">Search</label> <input class="search form-control pure-input-1" id="reference-search-text" placeholder="Search" style="margin-bottom:10px;" /> <fieldset> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="name" style="position:relative;top:2px;" id="reference-search-sort-name"><label for="reference-search-sort-name" style="margin-left: .3em;">Sort by title</label></div> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="date" data-order="desc" style="position:relative;top:2px;" id="reference-search-sort-date"><label for="reference-search-sort-date" style="margin-left: .3em;">Sort by date</label></div> </fieldset> <div class="text-left" style="margin-left:1em;"> <a href="" class="filter-clear clearfix" title="Clear filter / sort" style="font-weight:normal; float:none;">[ × clear filter / sort ]</a> </div> </form> </div> </div> </div> </section> <section id="biblio-related" class="tab-content tab-content-sec " data-tab="biblio"> <div class="row"> <div class="col-sm-9 order-sm-9"> <section id="biblio-similar" class="tab-content tab-content-sec active" data-tab="related"> <div class="padding"> <p class="lead text-muted" style="font-size: 18px; margin-top:0px;">Similar records in OSTI.GOV collections:</p> <aside> <ul class="item-list" itemscope itemtype="http://schema.org/ItemList" style="padding-left:0; list-style-type: none;"> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="0" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/22038607-entanglement-quantification-local-unitary-operations" itemprop="url">Entanglement quantification by local unitary operations</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Monras, A.</span> ; <span class="author">Giampaolo, S. M.</span> ; <span class="author">Gualdi, G.</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Physical Review. A</span> </span> </div> <div class="abstract">Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitary operations play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as ''mirror entanglement.'' They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary operator. To the action of each different local<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> unitary operator there corresponds a different distance. We then minimize these distances over the sets of local unitary operations with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror-entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary operator for the associated mirror entanglement to be faithful, i.e., to vanish in and only in separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the ''stellar mirror entanglement'' associated with the traceless local unitary operations with nondegenerate spectra and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of S. M. Giampaolo and F. Illuminati [Phys. Rev. A 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.1103/PHYSREVA.84.012301" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="22038607" data-product-type="Journal Article" data-product-subtype="AC" >10.1103/PHYSREVA.84.012301</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="1" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/21140453-entanglement-distribution-pure-state-quantum-networks" itemprop="url">Entanglement distribution in pure-state quantum networks</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Perseguers, Sebastien</span> ; <span class="author">Cirac, J. Ignacio</span> ; <span class="author">Wehr, Jan</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Physical Review. A</span> </span> </div> <div class="abstract">We investigate entanglement distribution in pure-state quantum networks. We consider the case when nonmaximally entangled two-qubit pure states are shared by neighboring nodes of the network. For a given pair of nodes, we investigate how to generate the maximal entanglement between them by performing local measurements, assisted by classical communication, on the other nodes. We find optimal measurement protocols for both small and large one-dimensional networks. Quite surprisingly, we prove that Bell measurements are not always the optimal ones to perform in such networks. We generalize then the results to simple small two-dimensional (2D) networks, finding again counterintuitive optimal measurement<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> strategies. Finally, we consider large networks with hierarchical lattice geometries and 2D networks. We prove that perfect entanglement can be established on large distances with probability one in a finite number of steps, provided the initial entanglement shared by neighboring nodes is large enough. We discuss also various protocols of entanglement distribution in 2D networks employing classical and quantum percolation strategies.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.1103/PHYSREVA.77.022308" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="21140453" data-product-type="Journal Article" data-product-subtype="" >10.1103/PHYSREVA.77.022308</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="2" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1372592-quantum-entanglement-growth-under-random-unitary-dynamics" itemprop="url">Quantum Entanglement Growth under Random Unitary Dynamics</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Nahum, Adam</span> ; <span class="author">Ruhman, Jonathan</span> ; <span class="author">Vijay, Sagar</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Physical Review. X</span> </span> </div> <div class="abstract">Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the “entanglement tsunami” in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ) equation. The mean entanglement grows<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> linearly in time, while fluctuations grow like (time) <sup>1/3</sup> and are spatially correlated over a distance ∝(time) <sup>2/3</sup>. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i) a stochastic model of a growing surface, (ii) a “minimal cut” picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii) a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the “velocity” of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <span class="fa fa-book text-muted" aria-hidden="true"></span> Cited by 36<div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.1103/PhysRevX.7.031016" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1372592" data-product-type="Journal Article" data-product-subtype="PA" >10.1103/PhysRevX.7.031016</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="3" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1424920-quantum-entanglement-growth-under-random-unitary-dynamics" itemprop="url">Quantum Entanglement Growth under Random Unitary Dynamics</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Nahum, Adam</span> ; <span class="author">Ruhman, Jonathan</span> ; <span class="author">Vijay, Sagar</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Physical Review. X</span> </span> </div> <div class="abstract">Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the “entanglement tsunami” in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ) equation. The mean entanglement grows<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> linearly in time, while fluctuations grow like (time) <sup>1/3</sup> and are spatially correlated over a distance ∝(time) <sup>2/3</sup>. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i) a stochastic model of a growing surface, (ii) a “minimal cut” picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii) a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the “velocity” of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <span class="fa fa-book text-muted" aria-hidden="true"></span> Cited by 36<div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.1103/PhysRevX.7.031016" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1424920" data-product-type="Journal Article" data-product-subtype="AM" >10.1103/PhysRevX.7.031016</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1424920" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1424920" data-product-type="Journal Article" data-product-subtype="AM" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="4" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/22403462-entanglement-universality-two-qubit-states" itemprop="url">Entanglement universality of two-qubit X-states</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Mendonça, Paulo E.M.F., E-mail: pmendonca@gmail.com</span> ; <span class="author">Marchiolli, Marcelo A., E-mail: marcelo_march@bol.com.br</span> ; <span class="author">Galetti, Diógenes, E-mail: galetti@ift.unesp.br</span> <span class="text-muted pubdata"> - Annals of Physics (New York)</span> </span> </div> <div class="abstract">We demonstrate that for every two-qubit state there is a X-counterpart, i.e., a corresponding two-qubit X-state of same spectrum and entanglement, as measured by concurrence, negativity or relative entropy of entanglement. By parametrizing the set of two-qubit X-states and a family of unitary transformations that preserve the sparse structure of a two-qubit X-state density matrix, we obtain the parametric form of a unitary transformation that converts arbitrary two-qubit states into their X-counterparts. Moreover, we provide a semi-analytic prescription on how to set the parameters of this unitary transformation in order to preserve concurrence or negativity. We also explicitly construct a set<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> of X-state density matrices, parametrized by their purity and concurrence, whose elements are in one-to-one correspondence with the points of the concurrence versus purity (CP) diagram for generic two-qubit states. - Highlights: • Parametrization of separable, entangled and rank-specific two-qubit X-states. • Construction of a set of two-qubit X-states exhausting a two-qubit CP-diagram. • Parametrization of a disentangling unitary transformation for any two-qubit X-state. • Unitary transformation of any two-qubit state into a X-state of same entanglement.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink">DOI: <a class="misc doi-link " href="https://doi.org/10.1016/J.AOP.2014.08.017" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="22403462" data-product-type="Journal Article" data-product-subtype="AC" >10.1016/J.AOP.2014.08.017</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> </ul> </aside> </div> </section> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a class="tab-nav disabled" data-tab="related" style="color: #636c72 !important; opacity: 1;"><span class="fa fa-angle-right"></span> Similar Records</a></li> </ul> </div> </div> </section> </div></div> </div> </div> </section> <footer class="" style="background-color:#f9f9f9; /* padding-top: 0.5rem; */"> <div class="footer-minor"> <div class="container"> <hr class="footer-separator" /> <div class="text-center" style="margin-top:1.25rem;"> <div class="pure-menu pure-menu-horizontal"> <ul class="pure-menu-list" id="footer-org-menu"> <li class="pure-menu-item"> <a href="https://energy.gov" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-us-doe-min" alt="U.S. Department of Energy" /> </a> </li> <li class="pure-menu-item"> <a href="https://www.energy.gov/science/office-science" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-office-of-science-min" alt="Office of Science" /> </a> </li> <li class="pure-menu-item"> <a href="/"> <img src="" class="sprite sprite-footer-osti-min" alt="Office of Scientific and Technical Information" /> </a> </li> </ul> </div> </div> <div class="text-center small" style="margin-top:0.5em;margin-bottom:2.0rem;"> <div class="pure-menu pure-menu-horizontal"> <ul class="pure-menu-list"> <li class="pure-menu-item"><a href="/disclaim" class="pure-menu-link"><span class="fa fa-institution"></span> Website Policies <span class="hidden-xs">/ Important Links</span></a></li> <li class="pure-menu-item"><a href="/pages/contact" class="pure-menu-link"><span class="fa fa-comments-o"></span> Contact Us</a></li> <li class="d-block d-md-none"></li> <li class="pure-menu-item"><a href="https://www.facebook.com/ostigov" target="_blank" rel="noopener noreferrer" class="pure-menu-link social"><span class="fa fa-facebook" style=""></span></a></li> <li class="pure-menu-item"><a href="https://twitter.com/OSTIgov" target="_blank" rel="noopener noreferrer" class="pure-menu-link social"><span class="fa fa-twitter" style=""></span></a></li> <li class="pure-menu-item"><a href="https://www.youtube.com/user/ostigov" target="_blank" rel="noopener noreferrer" class="pure-menu-link social"><span class="fa fa-youtube-play" style=""></span></a></li> </ul> </div> </div> </div> </div> </footer> <link href="/pages/css/pages.fonts.200113.2012.css" rel="stylesheet"> <script src="/pages/js/pages.200113.2012.js"></script><noscript></noscript> <script defer src="/pages/js/pages.biblio.200113.2012.js"></script><noscript></noscript> <script defer src="/pages/js/lity.js"></script><noscript></noscript><script async type="text/javascript" src="/pages/js/Universal-Federated-Analytics-Min.js?agency=DOE" id="_fed_an_ua_tag"></script><noscript></noscript></body> <!-- DOE PAGES v.200113.2012 --> </html>