skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Evaluation of Brønsted acidity and proton topology in Zr- and Hf-based metal–organic frameworks using potentiometric acid–base titration

Abstract

Potentiometric acid–base titration is introduced as a method to evaluate pKa values (Brønsted acidity) of protons present in the nodes of water stable Zr6- and Hf6-based metal–organic frameworks (MOFs), including UiO-type MOFs, NU-1000, and MOF-808. pKa values were determined for the three typical types of protons present in these MOFs: μ3-OH, M–OH2, and M–OH (M = Zr, Hf). In addition, the data was used to quantify defect sites resulting from either a surfeit or shortage of linkers in the MOFs and to provide information about the true proton topology of each material.

Authors:
 [1];  [1];  [1];  [1];  [2]
  1. Northwestern Univ., Evanston, IL (United States)
  2. Northwestern Univ., Evanston, IL (United States); King Abdulaziz Univ., Jeddah (Saudi Arabia)
Publication Date:
Research Org.:
Univ. of Minnesota, Minneapolis, MN (United States). Nanoporous Materials Genome Center
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Contributing Org.:
J. B. Cohen X-Ray Diffraction Facility
OSTI Identifier:
1488856
Grant/Contract Number:  
FG02-12ER16362; SC0008688
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Materials Chemistry. A
Additional Journal Information:
Journal Volume: 4; Journal Issue: 4; Journal ID: ISSN 2050-7488
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Klet, Rachel C., Liu, Yangyang, Wang, Timothy C., Hupp, Joseph T., and Farha, Omar K. Evaluation of Brønsted acidity and proton topology in Zr- and Hf-based metal–organic frameworks using potentiometric acid–base titration. United States: N. p., 2016. Web. doi:10.1039/C5TA07687K.
Klet, Rachel C., Liu, Yangyang, Wang, Timothy C., Hupp, Joseph T., & Farha, Omar K. Evaluation of Brønsted acidity and proton topology in Zr- and Hf-based metal–organic frameworks using potentiometric acid–base titration. United States. doi:10.1039/C5TA07687K.
Klet, Rachel C., Liu, Yangyang, Wang, Timothy C., Hupp, Joseph T., and Farha, Omar K. Tue . "Evaluation of Brønsted acidity and proton topology in Zr- and Hf-based metal–organic frameworks using potentiometric acid–base titration". United States. doi:10.1039/C5TA07687K. https://www.osti.gov/servlets/purl/1488856.
@article{osti_1488856,
title = {Evaluation of Brønsted acidity and proton topology in Zr- and Hf-based metal–organic frameworks using potentiometric acid–base titration},
author = {Klet, Rachel C. and Liu, Yangyang and Wang, Timothy C. and Hupp, Joseph T. and Farha, Omar K.},
abstractNote = {Potentiometric acid–base titration is introduced as a method to evaluate pKa values (Brønsted acidity) of protons present in the nodes of water stable Zr6- and Hf6-based metal–organic frameworks (MOFs), including UiO-type MOFs, NU-1000, and MOF-808. pKa values were determined for the three typical types of protons present in these MOFs: μ3-OH, M–OH2, and M–OH (M = Zr, Hf). In addition, the data was used to quantify defect sites resulting from either a surfeit or shortage of linkers in the MOFs and to provide information about the true proton topology of each material.},
doi = {10.1039/C5TA07687K},
journal = {Journal of Materials Chemistry. A},
number = 4,
volume = 4,
place = {United States},
year = {2016},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 98 works
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: M6 nodes (M = Zr, Hf) showing 3D porous structure (top), node connectivity (middle), and proton topology (bottom) for (a) UiO-type MOFs (12-connected) (UiO-67 is shown on top), (b) NU-1000 (8-connected), and (c) MOF-808 (6-connected). Protons and carboxylate linkers have been omitted from the 3D porous and protonmore » topology figures, respectively, for clarity. Zr/Hf, C, H, and O are shown in green, black, white, and red, respectively.« less

Save / Share:

Works referenced in this record:

Synthesis Modulation as a Tool To Increase the Catalytic Activity of Metal–Organic Frameworks: The Unique Case of UiO-66(Zr)
journal, July 2013

  • Vermoortele, Frederik; Bueken, Bart; Le Bars, Gaëlle
  • Journal of the American Chemical Society, Vol. 135, Issue 31
  • DOI: 10.1021/ja405078u

Ion Conductivity and Transport by Porous Coordination Polymers and Metal–Organic Frameworks
journal, June 2013

  • Horike, Satoshi; Umeyama, Daiki; Kitagawa, Susumu
  • Accounts of Chemical Research, Vol. 46, Issue 11
  • DOI: 10.1021/ar300291s

Structural determination of a highly stable metal-organic framework with possible application to interim radioactive waste scavenging: Hf-UiO-66
journal, September 2012


Ultrahigh Porosity in Metal-Organic Frameworks
journal, July 2010


Water adsorption in UiO-66: the importance of defects
journal, January 2014

  • Ghosh, Pritha; Colón, Yamil J.; Snurr, Randall Q.
  • Chem. Commun., Vol. 50, Issue 77
  • DOI: 10.1039/C4CC04945D

Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory
journal, April 2011

  • Valenzano, Loredana; Civalleri, Bartolomeo; Chavan, Sachin
  • Chemistry of Materials, Vol. 23, Issue 7, p. 1700-1718
  • DOI: 10.1021/cm1022882

Metal–Organic Framework Thin Films as Platforms for Atomic Layer Deposition of Cobalt Ions To Enable Electrocatalytic Water Oxidation
journal, December 2015

  • Kung, Chung-Wei; Mondloch, Joseph E.; Wang, Timothy C.
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 51
  • DOI: 10.1021/acsami.5b06901

Titration of Zr3(μ-OH) Hydroxy Groups at the Cornerstones of Bulk MOF UiO-67, [Zr6O4(OH)4(biphenyldicarboxylate)6], and Their Reaction with [AuMe(PMe3)]
journal, May 2012

  • Larabi, Cherif; Quadrelli, Elsje Alessandra
  • European Journal of Inorganic Chemistry, Vol. 2012, Issue 18, p. 3014-3022
  • DOI: 10.1002/ejic.201200033

Metal–organic framework materials as catalysts
journal, January 2009

  • Lee, JeongYong; Farha, Omar K.; Roberts, John
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1450-1459
  • DOI: 10.1039/b807080f

An amino-modified Zr-terephthalate metal–organic framework as an acid–base catalyst for cross-aldol condensation
journal, January 2011

  • Vermoortele, Frederik; Ameloot, Rob; Vimont, Alexandre
  • Chem. Commun., Vol. 47, Issue 5
  • DOI: 10.1039/C0CC03038D

Metal-Organic Frameworks: Opportunities for Catalysis
journal, September 2009

  • Farrusseng, David; Aguado, Sonia; Pinel, Catherine
  • Angewandte Chemie International Edition, Vol. 48, Issue 41
  • DOI: 10.1002/anie.200806063

Metal–Organic Framework Nodes as Nearly Ideal Supports for Molecular Catalysts: NU-1000- and UiO-66-Supported Iridium Complexes
journal, June 2015

  • Yang, Dong; Odoh, Samuel O.; Wang, Timothy C.
  • Journal of the American Chemical Society, Vol. 137, Issue 23, p. 7391-7396
  • DOI: 10.1021/jacs.5b02956

Cellulose Hydrolysis by a New Porous Coordination Polymer Decorated with Sulfonic Acid Functional Groups
journal, June 2011

  • Akiyama, George; Matsuda, Ryotaro; Sato, Hiroshi
  • Advanced Materials, Vol. 23, Issue 29
  • DOI: 10.1002/adma.201101356

Rational Design, Synthesis, Purification, and Activation of Metal−Organic Framework Materials
journal, August 2010

  • Farha, Omar K.; Hupp, Joseph T.
  • Accounts of Chemical Research, Vol. 43, Issue 8, p. 1166-1175
  • DOI: 10.1021/ar1000617

Correlated defect nanoregions in a metal–organic framework
journal, June 2014

  • Cliffe, Matthew J.; Wan, Wei; Zou, Xiaodong
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5176

Reticular synthesis and the design of new materials
journal, June 2003

  • Yaghi, Omar M.; O'Keeffe, Michael; Ockwig, Nathan W.
  • Nature, Vol. 423, Issue 6941, p. 705-714
  • DOI: 10.1038/nature01650

An Exceptionally Stable, Porphyrinic Zr Metal–Organic Framework Exhibiting pH-Dependent Fluorescence
journal, September 2013

  • Jiang, Hai-Long; Feng, Dawei; Wang, Kecheng
  • Journal of the American Chemical Society, Vol. 135, Issue 37
  • DOI: 10.1021/ja406844r

Unusual and Highly Tunable Missing-Linker Defects in Zirconium Metal–Organic Framework UiO-66 and Their Important Effects on Gas Adsorption
journal, May 2013

  • Wu, Hui; Chua, Yong Shen; Krungleviciute, Vaiva
  • Journal of the American Chemical Society, Vol. 135, Issue 28
  • DOI: 10.1021/ja404514r

Electronic Effects of Linker Substitution on Lewis Acid Catalysis with Metal-Organic Frameworks
journal, April 2012

  • Vermoortele, Frederik; Vandichel, Matthias; Van de Voorde, Ben
  • Angewandte Chemie International Edition, Vol. 51, Issue 20
  • DOI: 10.1002/anie.201108565

Selective gas adsorption and separation in metal–organic frameworks
journal, January 2009

  • Li, Jian-Rong; Kuppler, Ryan J.; Zhou, Hong-Cai
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1477-1504
  • DOI: 10.1039/b802426j

Hydrogen Storage in Microporous Metal-Organic Frameworks with Exposed Metal Sites
journal, August 2008

  • Dincă, Mircea; Long, Jeffrey R.
  • Angewandte Chemie International Edition, Vol. 47, Issue 36, p. 6766-6779
  • DOI: 10.1002/anie.200801163

Defining the Proton Topology of the Zr6-Based Metal–Organic Framework NU-1000
journal, October 2014

  • Planas, Nora; Mondloch, Joseph E.; Tussupbayev, Samat
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 21, p. 3716-3723
  • DOI: 10.1021/jz501899j

Vanadium-Node-Functionalized UiO-66: A Thermally Stable MOF-Supported Catalyst for the Gas-Phase Oxidative Dehydrogenation of Cyclohexene
journal, June 2014

  • Nguyen, Huong Giang T.; Schweitzer, Neil M.; Chang, Chih-Yi
  • ACS Catalysis, Vol. 4, Issue 8, p. 2496-2500
  • DOI: 10.1021/cs5001448

A Metal–Organic Framework-Based Material for Electrochemical Sensing of Carbon Dioxide
journal, May 2014

  • Gassensmith, Jeremiah J.; Kim, Jeung Yoon; Holcroft, James M.
  • Journal of the American Chemical Society, Vol. 136, Issue 23
  • DOI: 10.1021/ja5006465

Vapor-Phase Metalation by Atomic Layer Deposition in a Metal–Organic Framework
journal, May 2013

  • Mondloch, Joseph E.; Bury, Wojciech; Fairen-Jimenez, David
  • Journal of the American Chemical Society, Vol. 135, Issue 28, p. 10294-10297
  • DOI: 10.1021/ja4050828

Reactions of VX, GD, and HD with Zr(OH)4 Near Instantaneous Decontamination of VX
journal, May 2012

  • Bandosz, Teresa J.; Laskoski, Matt; Mahle, John
  • The Journal of Physical Chemistry C, Vol. 116, Issue 21, p. 11606-11614
  • DOI: 10.1021/jp3028879

Instantaneous Hydrolysis of Nerve-Agent Simulants with a Six-Connected Zirconium-Based Metal-Organic Framework
journal, May 2015

  • Moon, Su-Young; Liu, Yangyang; Hupp, Joseph T.
  • Angewandte Chemie International Edition, Vol. 54, Issue 23
  • DOI: 10.1002/anie.201502155

Cooperative Cluster Metalation and Ligand Migration in Zirconium Metal-Organic Frameworks
journal, October 2015

  • Yuan, Shuai; Chen, Ying-Pin; Qin, Junsheng
  • Angewandte Chemie International Edition, Vol. 54, Issue 49
  • DOI: 10.1002/anie.201505625

Brønsted Acidity in Metal–Organic Frameworks
journal, June 2015


Defect-Engineered Metal-Organic Frameworks
journal, June 2015

  • Fang, Zhenlan; Bueken, Bart; De Vos, Dirk E.
  • Angewandte Chemie International Edition, Vol. 54, Issue 25
  • DOI: 10.1002/anie.201411540

Luminescent metal–organic frameworks for chemical sensing and explosive detection
journal, January 2014

  • Hu, Zhichao; Deibert, Benjamin J.; Li, Jing
  • Chem. Soc. Rev., Vol. 43, Issue 16
  • DOI: 10.1039/C4CS00010B

Metal–Organic Framework (MOF) Defects under Control: Insights into the Missing Linker Sites and Their Implication in the Reactivity of Zirconium-Based Frameworks
journal, August 2015

  • Gutov, Oleksii V.; Hevia, Miguel González; Escudero-Adán, Eduardo C.
  • Inorganic Chemistry, Vol. 54, Issue 17
  • DOI: 10.1021/acs.inorgchem.5b01053

Coordination-Chemistry Control of Proton Conductivity in the Iconic Metal–Organic Framework Material HKUST-1
journal, December 2011

  • Jeong, Nak Cheon; Samanta, Bappaditya; Lee, Chang Yeon
  • Journal of the American Chemical Society, Vol. 134, Issue 1
  • DOI: 10.1021/ja2110152

A facile synthesis of UiO-66, UiO-67 and their derivatives
journal, January 2013

  • Katz, Michael J.; Brown, Zachary J.; Colón, Yamil J.
  • Chemical Communications, Vol. 49, Issue 82
  • DOI: 10.1039/c3cc46105j

Are Zr 6 -based MOFs water stable? Linker hydrolysis vs. capillary-force-driven channel collapse
journal, January 2014

  • Mondloch, Joseph E.; Katz, Michael J.; Planas, Nora
  • Chemical Communications, Vol. 50, Issue 64
  • DOI: 10.1039/C4CC02401J

Hybrid porous solids past, present, future
journal, January 2008

  • Férey, Gérard
  • Chem. Soc. Rev., Vol. 37, Issue 1, p. 191-214
  • DOI: 10.1039/B618320B

Water Adsorption in Porous Metal–Organic Frameworks and Related Materials
journal, March 2014

  • Furukawa, Hiroyasu; Gándara, Felipe; Zhang, Yue-Biao
  • Journal of the American Chemical Society, Vol. 136, Issue 11, p. 4369-4381
  • DOI: 10.1021/ja500330a

MIL-101-SO 3 H: A Highly Efficient Brønsted Acid Catalyst for Heterogeneous Alcoholysis of Epoxides under Ambient Conditions
journal, October 2014

  • Zhou, Yu-Xiao; Chen, Yu-Zhen; Hu, Yingli
  • Chemistry - A European Journal, Vol. 20, Issue 46
  • DOI: 10.1002/chem.201404104

De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities
journal, September 2010

  • Farha, Omar K.; Özgür Yazaydın, A.; Eryazici, Ibrahim
  • Nature Chemistry, Vol. 2, Issue 11, p. 944-948
  • DOI: 10.1038/nchem.834

Highly Stable Crystalline Catalysts Based on a Microporous Metal−Organic Framework and Polyoxometalates
journal, February 2009

  • Sun, Chun-Yan; Liu, Shu-Xia; Liang, Da-Dong
  • Journal of the American Chemical Society, Vol. 131, Issue 5
  • DOI: 10.1021/ja807357r

Tuning pore size in a zirconium–tricarboxylate metal–organic framework
journal, January 2014

  • Liang, Weibin; Chevreau, Hubert; Ragon, Florence
  • CrystEngComm, Vol. 16, Issue 29
  • DOI: 10.1039/C4CE01031K

Destruction of chemical warfare agents using metal–organic frameworks
journal, March 2015

  • Mondloch, Joseph E.; Katz, Michael J.; Isley III, William C.
  • Nature Materials, Vol. 14, Issue 5
  • DOI: 10.1038/nmat4238

A Hafnium-Based Metal–Organic Framework as an Efficient and Multifunctional Catalyst for Facile CO2 Fixation and Regioselective and Enantioretentive Epoxide Activation
journal, October 2014

  • Beyzavi, M. Hassan; Klet, Rachel C.; Tussupbayev, Samat
  • Journal of the American Chemical Society, Vol. 136, Issue 45, p. 15861-15864
  • DOI: 10.1021/ja508626n

Pore Surface Engineering with Controlled Loadings of Functional Groups via Click Chemistry in Highly Stable Metal–Organic Frameworks
journal, August 2012

  • Jiang, Hai-Long; Feng, Dawei; Liu, Tian-Fu
  • Journal of the American Chemical Society, Vol. 134, Issue 36
  • DOI: 10.1021/ja3063919

A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability
journal, October 2008

  • Cavka, Jasmina Hafizovic; Jakobsen, Søren; Olsbye, Unni
  • Journal of the American Chemical Society, Vol. 130, Issue 42, p. 13850-13851
  • DOI: 10.1021/ja8057953

Simple and Compelling Biomimetic Metal-Organic Framework Catalyst for the Degradation of Nerve Agent Simulants
journal, November 2013

  • Katz, Michael J.; Mondloch, Joseph E.; Totten, Ryan K.
  • Angewandte Chemie International Edition, Vol. 53, Issue 2, p. 497-501
  • DOI: 10.1002/anie.201307520

Drastic Enhancement of the CO 2 Adsorption Properties in Sulfone-Functionalized Zr- and Hf-UiO-67 MOFs with Hierarchical Mesopores
journal, December 2013

  • Xydias, Pantelis; Spanopoulos, Ioannis; Klontzas, Emmanuel
  • Inorganic Chemistry, Vol. 53, Issue 2
  • DOI: 10.1021/ic402430n

Metal–Organic Framework Materials as Chemical Sensors
journal, September 2011

  • Kreno, Lauren E.; Leong, Kirsty; Farha, Omar K.
  • Chemical Reviews, Vol. 112, Issue 2, p. 1105-1125
  • DOI: 10.1021/cr200324t

Targeted Single-Site MOF Node Modification: Trivalent Metal Loading via Atomic Layer Deposition
journal, June 2015


Postsynthetic Modification of a Metal–Organic Framework for Stabilization of a Hemiaminal and Ammonia Uptake
journal, August 2011

  • Morris, William; Doonan, Christian J.; Yaghi, Omar M.
  • Inorganic Chemistry, Vol. 50, Issue 15, p. 6853-6855
  • DOI: 10.1021/ic200744y

Adsorption of Ammonia by Sulfuric Acid Treated Zirconium Hydroxide
journal, June 2012

  • Glover, T. Grant; Peterson, Gregory W.; DeCoste, Jared B.
  • Langmuir, Vol. 28, Issue 28
  • DOI: 10.1021/la302118h

Homochiral Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis
journal, September 2011

  • Yoon, Minyoung; Srirambalaji, Renganathan; Kim, Kimoon
  • Chemical Reviews, Vol. 112, Issue 2, p. 1196-1231
  • DOI: 10.1021/cr2003147

Detailed Structure Analysis of Atomic Positions and Defects in Zirconium Metal–Organic Frameworks
journal, October 2014

  • Øien, Sigurd; Wragg, David; Reinsch, Helge
  • Crystal Growth & Design, Vol. 14, Issue 11
  • DOI: 10.1021/cg501386j

Single-Site Organozirconium Catalyst Embedded in a Metal–Organic Framework
journal, December 2015

  • Klet, Rachel C.; Tussupbayev, Samat; Borycz, Joshua
  • Journal of the American Chemical Society, Vol. 137, Issue 50
  • DOI: 10.1021/jacs.5b11350

Proton Conduction in Metal-Organic Frameworks and Related Modularly Built Porous Solids
journal, January 2013

  • Yoon, Minyoung; Suh, Kyungwon; Natarajan, Srinivasan
  • Angewandte Chemie International Edition, Vol. 52, Issue 10
  • DOI: 10.1002/anie.201206410

Soft porous crystals
journal, November 2009

  • Horike, Satoshi; Shimomura, Satoru; Kitagawa, Susumu
  • Nature Chemistry, Vol. 1, Issue 9, p. 695-704
  • DOI: 10.1038/nchem.444

    Works referencing / citing this record:

    A new superacid hafnium-based metal–organic framework as a highly active heterogeneous catalyst for the synthesis of benzoxazoles under solvent-free conditions
    journal, January 2017

    • Nguyen, Linh H. T.; Nguyen, The T.; Nguyen, Ha L.
    • Catalysis Science & Technology, Vol. 7, Issue 19
    • DOI: 10.1039/c7cy01668a

    Efficient extraction of inorganic selenium from water by a Zr metal–organic framework: investigation of volumetric uptake capacity and binding motifs
    journal, January 2018

    • Drout, Riki J.; Howarth, Ashlee J.; Otake, Ken-ichi
    • CrystEngComm, Vol. 20, Issue 40
    • DOI: 10.1039/c8ce00992a

    A new superacid hafnium-based metal–organic framework as a highly active heterogeneous catalyst for the synthesis of benzoxazoles under solvent-free conditions
    journal, January 2017

    • Nguyen, Linh H. T.; Nguyen, The T.; Nguyen, Ha L.
    • Catalysis Science & Technology, Vol. 7, Issue 19
    • DOI: 10.1039/c7cy01668a

    Efficient extraction of inorganic selenium from water by a Zr metal–organic framework: investigation of volumetric uptake capacity and binding motifs
    journal, January 2018

    • Drout, Riki J.; Howarth, Ashlee J.; Otake, Ken-ichi
    • CrystEngComm, Vol. 20, Issue 40
    • DOI: 10.1039/c8ce00992a