skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Molecular-level driving forces in lignocellulosic biomass deconstruction for bioenergy

Abstract

We present that the plant cell wall biopolymers lignin, cellulose and hemicellulose are potential renewable sources of clean biofuels and high-value chemicals. However, the complex 3D structure of lignocellulosic biomass is recalcitrant to deconstruction. Major efforts to overcome this recalcitrance have involved pretreating biomass before catalytic processing. This Perspective describes recent work aimed at elucidating the molecular-level physical phenomena that drive biomass assembly. These are at play in commonly employed aqueous-based and thermochemical pretreatments. Lastly, several key processes have been found to be driven by biomass solvation thermodynamics, an understanding of which therefore facilitates the rational improvement of methods aimed at the complete solubilization and fractionation of the major biomass components.

Authors:
ORCiD logo [1]; ORCiD logo [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1488718
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Nature Reviews Chemistry
Additional Journal Information:
Journal Volume: 2; Journal Issue: 11; Journal ID: ISSN 2397-3358
Publisher:
Springer Nature
Country of Publication:
United States
Language:
English
Subject:
09 BIOMASS FUELS; 59 BASIC BIOLOGICAL SCIENCES

Citation Formats

Petridis, Loukas, and Smith, Jeremy C. Molecular-level driving forces in lignocellulosic biomass deconstruction for bioenergy. United States: N. p., 2018. Web. doi:10.1038/s41570-018-0050-6.
Petridis, Loukas, & Smith, Jeremy C. Molecular-level driving forces in lignocellulosic biomass deconstruction for bioenergy. United States. doi:10.1038/s41570-018-0050-6.
Petridis, Loukas, and Smith, Jeremy C. Thu . "Molecular-level driving forces in lignocellulosic biomass deconstruction for bioenergy". United States. doi:10.1038/s41570-018-0050-6. https://www.osti.gov/servlets/purl/1488718.
@article{osti_1488718,
title = {Molecular-level driving forces in lignocellulosic biomass deconstruction for bioenergy},
author = {Petridis, Loukas and Smith, Jeremy C.},
abstractNote = {We present that the plant cell wall biopolymers lignin, cellulose and hemicellulose are potential renewable sources of clean biofuels and high-value chemicals. However, the complex 3D structure of lignocellulosic biomass is recalcitrant to deconstruction. Major efforts to overcome this recalcitrance have involved pretreating biomass before catalytic processing. This Perspective describes recent work aimed at elucidating the molecular-level physical phenomena that drive biomass assembly. These are at play in commonly employed aqueous-based and thermochemical pretreatments. Lastly, several key processes have been found to be driven by biomass solvation thermodynamics, an understanding of which therefore facilitates the rational improvement of methods aimed at the complete solubilization and fractionation of the major biomass components.},
doi = {10.1038/s41570-018-0050-6},
journal = {Nature Reviews Chemistry},
number = 11,
volume = 2,
place = {United States},
year = {2018},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 10 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1 : The structure of lignocellulosic biomass and its components. Aa | Cellulose consists of unbranched polysaccharide chains, with β-(1→4) linkages between D-glucose units affording a polymer referred to as β-1,4-glucan. Ab | In contrast, hemicelluloses are often branched and contain more than one type of residue. The examplemore » here is a xyloglucan, in which the monomers in β-1,4-glucan often feature α-(1→6) linkages to xylose. In turn, these sidechains can be further decorated with β-(1→2) linkages to galactose. Ac | $p$-Coumaryl (1), coniferyl (2) and sinapyl (3) alcohols differ in their degree of methoxylation. These three predominant monolignols give rise to the hydroxyphenyl (H), guaiacyl (G), and syringyl (S) units that make up lignin. Ad | Lignin is a cross-linked amorphous polymer. In this example, G units are linked through β-O-4′ and 5-5’ linkages. B | Native biomass is a complex material comprising the components in A. The simulation-inspired structure (REF. 54) here shows the colour-coded cellulose (green, with seven microfibrils depicted as forming a fibre), hemicellulose (yellow) and lignin (brown) domains.« less

Save / Share:

Works referenced in this record:

Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls
journal, September 2015

  • Wang, Tuo; Hong, Mei
  • Journal of Experimental Botany, Vol. 67, Issue 2
  • DOI: 10.1093/jxb/erv416

Mechanism of lignin inhibition of enzymatic biomass deconstruction
journal, December 2015

  • Vermaas, Josh V.; Petridis, Loukas; Qi, Xianghong
  • Biotechnology for Biofuels, Vol. 8, Issue 1
  • DOI: 10.1186/s13068-015-0379-8

Characterization and analysis of the molecular weight of lignin for biorefining studies
journal, June 2014

  • Tolbert, Allison; Akinosho, Hannah; Khunsupat, Ratayakorn
  • Biofuels, Bioproducts and Biorefining, Vol. 8, Issue 6
  • DOI: 10.1002/bbb.1500

Dissolution of Cellose with Ionic Liquids
journal, May 2002

  • Swatloski, Richard P.; Spear, Scott K.; Holbrey, John D.
  • Journal of the American Chemical Society, Vol. 124, Issue 18, p. 4974-4975
  • DOI: 10.1021/ja025790m

Solvent Effects in Acid-Catalyzed Biomass Conversion Reactions
journal, September 2014

  • Mellmer, Max A.; Sener, Canan; Gallo, Jean Marcel R.
  • Angewandte Chemie International Edition, Vol. 53, Issue 44
  • DOI: 10.1002/anie.201408359

Reaction Kinetics of Concentrated-Acid Hydrolysis for Cellulose and Hemicellulose and Effect of Crystallinity
journal, November 2015


Simulation studies of the insolubility of cellulose
journal, September 2010


Effects of Xylan Side-Chain Substitutions on Xylan–Cellulose Interactions and Implications for Thermal Pretreatment of Cellulosic Biomass
journal, March 2017


Design of low-cost ionic liquids for lignocellulosic biomass pretreatment
journal, January 2015

  • George, Anthe; Brandt, Agnieszka; Tran, Kim
  • Green Chemistry, Vol. 17, Issue 3
  • DOI: 10.1039/C4GC01208A

Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose
journal, August 2014

  • Socha, A. M.; Parthasarathi, R.; Shi, J.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 35
  • DOI: 10.1073/pnas.1405685111

Dissolving process of a cellulose bunch in ionic liquids: a molecular dynamics study
journal, January 2015

  • Li, Yao; Liu, Xiaomin; Zhang, Suojiang
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 27
  • DOI: 10.1039/C5CP02009C

Rationalizing cellulose (in)solubility: reviewing basic physicochemical aspects and role of hydrophobic interactions
journal, January 2012


Morphological changes in the cellulose and lignin components of biomass occur at different stages during steam pretreatment
journal, January 2014

  • Pingali, Sai Venkatesh; O’Neill, Hugh M.; Nishiyama, Yoshiharu
  • Cellulose, Vol. 21, Issue 2
  • DOI: 10.1007/s10570-013-0162-6

Characterizing Ionic Liquids On the Basis of Multiple Solvation Interactions
journal, November 2002

  • Anderson, Jared L.; Ding, Jie; Welton, Thomas
  • Journal of the American Chemical Society, Vol. 124, Issue 47
  • DOI: 10.1021/ja028156h

Simulation of a cellulose fiber in ionic liquid suggests a synergistic approach to dissolution
journal, August 2013


The impact of lignin source on its self-assembly in solution
journal, January 2015

  • Ratnaweera, Dilru R.; Saha, Dipendu; Pingali, Sai Venkatesh
  • RSC Advances, Vol. 5, Issue 82
  • DOI: 10.1039/C5RA13485D

Effects of lengthscales and attractions on the collapse of hydrophobic polymers in water
journal, January 2007

  • Athawale, Manoj V.; Goel, Gaurav; Ghosh, Tuhin
  • Proceedings of the National Academy of Sciences, Vol. 104, Issue 3
  • DOI: 10.1073/pnas.0605139104

Complete lignocellulose conversion with integrated catalyst recycling yielding valuable aromatics and fuels
journal, January 2018


Conformations of Low-Molecular-Weight Lignin Polymers in Water
journal, January 2016


Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenyl- propanoids
journal, January 2004


Cellobiohydrolase Hydrolyzes Crystalline Cellulose on Hydrophobic Faces
journal, January 2011

  • Liu, Yu-San; Baker, John O.; Zeng, Yining
  • Journal of Biological Chemistry, Vol. 286, Issue 13
  • DOI: 10.1074/jbc.M110.216556

Understanding the Interactions of Cellulose with Ionic Liquids: A Molecular Dynamics Study
journal, April 2010

  • Liu, Hanbin; Sale, Kenneth L.; Holmes, Bradley M.
  • The Journal of Physical Chemistry B, Vol. 114, Issue 12
  • DOI: 10.1021/jp9117437

Xyloglucan and its Interactions with Other Components of the Growing Cell Wall
journal, January 2015

  • Park, Yong Bum; Cosgrove, Daniel J.
  • Plant and Cell Physiology, Vol. 56, Issue 2
  • DOI: 10.1093/pcp/pcu204

Cosolvent pretreatment in cellulosic biofuel production: effect of tetrahydrofuran-water on lignin structure and dynamics
journal, January 2016

  • Smith, Micholas Dean; Mostofian, Barmak; Cheng, Xiaolin
  • Green Chemistry, Vol. 18, Issue 5
  • DOI: 10.1039/C5GC01952D

Solvent-Driven Preferential Association of Lignin with Regions of Crystalline Cellulose in Molecular Dynamics Simulation
journal, September 2013

  • Lindner, Benjamin; Petridis, Loukas; Schulz, Roland
  • Biomacromolecules, Vol. 14, Issue 10
  • DOI: 10.1021/bm400442n

Inhibition of enzymatic hydrolysis by residual lignins from softwood-study of enzyme binding and inactivation on lignin-rich surface
journal, June 2011

  • Rahikainen, Jenni; Mikander, Saara; Marjamaa, Kaisa
  • Biotechnology and Bioengineering, Vol. 108, Issue 12
  • DOI: 10.1002/bit.23242

Interfaces and the driving force of hydrophobic assembly
journal, September 2005


Cellulose Microfibril Twist, Mechanics, and Implication for Cellulose Biosynthesis
journal, March 2013

  • Zhao, Zhen; Shklyaev, Oleg E.; Nili, Abdolmajid
  • The Journal of Physical Chemistry A, Vol. 117, Issue 12
  • DOI: 10.1021/jp3089929

Rapid dissolution of lignocellulosic biomass in ionic liquids using temperatures above the glass transition of lignin
journal, January 2011

  • Li, Weiying; Sun, Ning; Stoner, Breena
  • Green Chemistry, Vol. 13, Issue 8
  • DOI: 10.1039/c1gc15522a

An even pattern of xylan substitution is critical for interaction with cellulose in plant cell walls
journal, October 2017

  • Grantham, Nicholas J.; Wurman-Rodrich, Joel; Terrett, Oliver M.
  • Nature Plants, Vol. 3, Issue 11
  • DOI: 10.1038/s41477-017-0030-8

Nanoscale movements of cellulose microfibrils in primary cell walls
journal, April 2017

  • Zhang, Tian; Vavylonis, Dimitrios; Durachko, Daniel M.
  • Nature Plants, Vol. 3, Issue 5
  • DOI: 10.1038/nplants.2017.56

The production of furfural directly from hemicellulose in lignocellulosic biomass: A review
journal, January 2019


Replica-Exchange Molecular Dynamics Simulations of Cellulose Solvated in Water and in the Ionic Liquid 1-Butyl-3-Methylimidazolium Chloride
journal, September 2014

  • Mostofian, Barmak; Cheng, Xiaolin; Smith, Jeremy C.
  • The Journal of Physical Chemistry B, Vol. 118, Issue 38
  • DOI: 10.1021/jp502889c

Atomic-Level Structure Characterization of Biomass Pre- and Post-Lignin Treatment by Dynamic Nuclear Polarization-Enhanced Solid-State NMR
journal, January 2017

  • Perras, Frédéric A.; Luo, Hao; Zhang, Ximing
  • The Journal of Physical Chemistry A, Vol. 121, Issue 3
  • DOI: 10.1021/acs.jpca.6b11121

Pseudo-lignin and pretreatment chemistry
journal, January 2011

  • Sannigrahi, Poulomi; Kim, Dong Ho; Jung, Seokwon
  • Energy Environ. Sci., Vol. 4, Issue 4
  • DOI: 10.1039/C0EE00378F

Cellulose–hemicellulose interactions at elevated temperatures increase cellulose recalcitrance to biological conversion
journal, January 2018

  • Kumar, Rajeev; Bhagia, Samarthya; Smith, Micholas Dean
  • Green Chemistry, Vol. 20, Issue 4
  • DOI: 10.1039/C7GC03518G

One-pot integrated biofuel production using low-cost biocompatible protic ionic liquids
journal, January 2017

  • Sun, Jian; Konda, N. V. S. N. Murthy; Parthasarathi, Ramakrishnan
  • Green Chemistry, Vol. 19, Issue 13
  • DOI: 10.1039/C7GC01179B

Heterogeneity in the chemistry, structure and function of plant cell walls
journal, September 2010

  • Burton, Rachel A.; Gidley, Michael J.; Fincher, Geoffrey B.
  • Nature Chemical Biology, Vol. 6, Issue 10
  • DOI: 10.1038/nchembio.439

SANS Measurements of Semiflexible Xyloglucan Polysaccharide Chains in Water Reveal Their Self-Avoiding Statistics
journal, September 2011

  • Muller, François; Manet, Sabine; Jean, Bruno
  • Biomacromolecules, Vol. 12, Issue 9
  • DOI: 10.1021/bm200881x

Crystal Structure and Hydrogen Bonding System in Cellulose I α from Synchrotron X-ray and Neutron Fiber Diffraction
journal, November 2003

  • Nishiyama, Yoshiharu; Sugiyama, Junji; Chanzy, Henri
  • Journal of the American Chemical Society, Vol. 125, Issue 47
  • DOI: 10.1021/ja037055w

Crystal Structure and Hydrogen-Bonding System in Cellulose Iβ from Synchrotron X-ray and Neutron Fiber Diffraction
journal, August 2002

  • Nishiyama, Yoshiharu; Langan, Paul; Chanzy, Henri
  • Journal of the American Chemical Society, Vol. 124, Issue 31
  • DOI: 10.1021/ja0257319

On the Molecular Origins of Biomass Recalcitrance: The Interaction Network and Solvation Structures of Cellulose Microfibrils
journal, October 2010

  • Gross, Adam S.; Chu, Jhih-Wei
  • The Journal of Physical Chemistry B, Vol. 114, Issue 42
  • DOI: 10.1021/jp106452m

Predicting Enzyme Adsorption to Lignin Films by Calculating Enzyme Surface Hydrophobicity
journal, May 2014

  • Sammond, Deanne W.; Yarbrough, John M.; Mansfield, Elisabeth
  • Journal of Biological Chemistry, Vol. 289, Issue 30
  • DOI: 10.1074/jbc.M114.573642

Local Phase Separation of Co-solvents Enhances Pretreatment of Biomass for Bioenergy Applications
journal, August 2016

  • Mostofian, Barmak; Cai, Charles M.; Smith, Micholas Dean
  • Journal of the American Chemical Society, Vol. 138, Issue 34
  • DOI: 10.1021/jacs.6b03285

Solvent-enabled control of reactivity for liquid-phase reactions of biomass-derived compounds
journal, February 2018

  • Mellmer, Max A.; Sanpitakseree, Chotitath; Demir, Benginur
  • Nature Catalysis, Vol. 1, Issue 3
  • DOI: 10.1038/s41929-018-0027-3

Next-generation ammonia pretreatment enhances cellulosic biofuel production
journal, January 2016

  • da Costa Sousa, Leonardo; Jin, Mingjie; Chundawat, Shishir P. S.
  • Energy & Environmental Science, Vol. 9, Issue 4
  • DOI: 10.1039/C5EE03051J

Solvated Structure of Cellulose in a Phosphonate-Based Ionic Liquid
journal, August 2017


Cellulose Aggregation under Hydrothermal Pretreatment Conditions
journal, July 2016

  • Silveira, Rodrigo L.; Stoyanov, Stanislav R.; Kovalenko, Andriy
  • Biomacromolecules, Vol. 17, Issue 8
  • DOI: 10.1021/acs.biomac.6b00603

A review on the pretreatment of lignocellulose for high-value chemicals
journal, June 2017


Supramolecular Interactions in Secondary Plant Cell Walls: Effect of Lignin Chemical Composition Revealed with the Molecular Theory of Solvation
journal, December 2014

  • Silveira, Rodrigo L.; Stoyanov, Stanislav R.; Gusarov, Sergey
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 1
  • DOI: 10.1021/jz502298q

Cellulose co-crystallization and related phenomena occurring in hydrothermal treatment of sugarcane bagasse
journal, April 2015


Comparative structure and biomechanics of plant primary and secondary cell walls
journal, January 2012


The Maize Primary Cell Wall Microfibril:  A New Model Derived from Direct Visualization
journal, February 2006

  • Ding, Shi-You; Himmel, Michael E.
  • Journal of Agricultural and Food Chemistry, Vol. 54, Issue 3
  • DOI: 10.1021/jf051851z

Hydration Control of the Mechanical and Dynamical Properties of Cellulose
journal, October 2014

  • Petridis, Loukas; O’Neill, Hugh M.; Johnsen, Mariah
  • Biomacromolecules, Vol. 15, Issue 11
  • DOI: 10.1021/bm5011849

A Molecular Description of Cellulose Biosynthesis
journal, June 2015


Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue
journal, June 2015

  • Kumar, Adepu K.; Parikh, Bhumika S.; Pravakar, Mohanty
  • Environmental Science and Pollution Research, Vol. 23, Issue 10
  • DOI: 10.1007/s11356-015-4780-4

Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production
journal, February 2007

  • Himmel, M. E.; Ding, S.-Y.; Johnson, D. K.
  • Science, Vol. 315, Issue 5813, p. 804-807
  • DOI: 10.1126/science.1137016

A Structural Study of CESA1 Catalytic Domain of Arabidopsis Cellulose Synthesis Complex: Evidence for CESA Trimers
journal, November 2015

  • Vandavasi, Venu Gopal; Putnam, Daniel K.; Zhang, Qiu
  • Plant Physiology, Vol. 170, Issue 1
  • DOI: 10.1104/pp.15.01356

Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters
journal, May 2016


Self-similar multiscale structure of lignin revealed by neutron scattering and molecular dynamics simulation
journal, June 2011


The role of topological constraints in the kinetics of collapse of macromolecules
journal, January 1988


Increase in 4-Coumaryl Alcohol Units during Lignification in Alfalfa ( Medicago sativa ) Alters the Extractability and Molecular Weight of Lignin
journal, October 2010

  • Ziebell, Angela; Gracom, Kristen; Katahira, Rui
  • Journal of Biological Chemistry, Vol. 285, Issue 50
  • DOI: 10.1074/jbc.M110.137315

Deposition of Lignin Droplets Produced During Dilute Acid Pretreatment of Maize Stems Retards Enzymatic Hydrolysis of Cellulose
journal, December 2007

  • Selig, M. J.; Viamajala, S.; Decker, S. R.
  • Biotechnology Progress, Vol. 23, Issue 6
  • DOI: 10.1021/bp0702018

Tertiary model of a plant cellulose synthase
journal, April 2013

  • Sethaphong, L.; Haigler, C. H.; Kubicki, J. D.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 18
  • DOI: 10.1073/pnas.1301027110

Cellulose Synthesis in Higher Plants
journal, November 2006


Entropy of cellulose dissolution in water and in the ionic liquid 1-butyl-3-methylimidazolim chloride
journal, January 2012

  • Gross, Adam S.; Bell, Alexis T.; Chu, Jhih-Wei
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 23
  • DOI: 10.1039/c2cp40417f

Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review
journal, January 2016


Simulation Analysis of the Temperature Dependence of Lignin Structure and Dynamics
journal, December 2011

  • Petridis, Loukas; Schulz, Roland; Smith, Jeremy C.
  • Journal of the American Chemical Society, Vol. 133, Issue 50
  • DOI: 10.1021/ja206839u

Initial reaction mechanisms of cellulose pyrolysis revealed by ReaxFF molecular dynamics
journal, August 2016


Lignin Biosynthesis and Structure
journal, May 2010

  • Vanholme, R.; Demedts, B.; Morreel, K.
  • Plant Physiology, Vol. 153, Issue 3, p. 895-905
  • DOI: 10.1104/pp.110.155119

Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin
journal, November 2010

  • Nakagame, Seiji; Chandra, Richard P.; Kadla, John F.
  • Biotechnology and Bioengineering, Vol. 108, Issue 3
  • DOI: 10.1002/bit.22981

Milled Wood Lignin: A Linear Oligomer
journal, November 2011

  • Crestini, Claudia; Melone, Federica; Sette, Marco
  • Biomacromolecules, Vol. 12, Issue 11
  • DOI: 10.1021/bm200948r

Lignin Valorization: Improving Lignin Processing in the Biorefinery
journal, May 2014

  • Ragauskas, A. J.; Beckham, G. T.; Biddy, M. J.
  • Science, Vol. 344, Issue 6185, p. 1246843-1246843
  • DOI: 10.1126/science.1246843

Breakdown of Cell Wall Nanostructure in Dilute Acid Pretreated Biomass
journal, September 2010

  • Pingali, Sai Venkatesh; Urban, Volker S.; Heller, William T.
  • Biomacromolecules, Vol. 11, Issue 9
  • DOI: 10.1021/bm100455h

Research progress on dissolution and functional modification of cellulose in ionic liquids
journal, August 2008


Unraveling Cellulose Microfibrils: A Twisted Tale: Unraveling Cellulose Microfibrils
journal, July 2013

  • Hadden, Jodi A.; French, Alfred D.; Woods, Robert J.
  • Biopolymers, Vol. 99, Issue 10
  • DOI: 10.1002/bip.22279

Organic Solvent Effects in Biomass Conversion Reactions
journal, December 2015


The molecular origins of twist in cellulose I-beta
journal, July 2015


Water Structuring over the Hydrophobic Surface of Cellulose
journal, November 2014

  • Miyamoto, Hitomi; Schnupf, Udo; Brady, John W.
  • Journal of Agricultural and Food Chemistry, Vol. 62, Issue 46
  • DOI: 10.1021/jf501763r

Common processes drive the thermochemical pretreatment of lignocellulosic biomass
journal, January 2014

  • Langan, Paul; Petridis, Loukas; O'Neill, Hugh M.
  • Green Chem., Vol. 16, Issue 1
  • DOI: 10.1039/C3GC41962B

Formic-acid-induced depolymerization of oxidized lignin to aromatics
journal, November 2014

  • Rahimi, Alireza; Ulbrich, Arne; Coon, Joshua J.
  • Nature, Vol. 515, Issue 7526, p. 249-252
  • DOI: 10.1038/nature13867

On the mechanism of dissolution of cellulose
journal, September 2010


Co-solvent Pretreatment Reduces Costly Enzyme Requirements for High Sugar and Ethanol Yields from Lignocellulosic Biomass
journal, February 2015


Chemical Factors that Control Lignin Polymerization
journal, December 2013

  • Sangha, Amandeep K.; Davison, Brian H.; Standaert, Robert F.
  • The Journal of Physical Chemistry B, Vol. 118, Issue 1
  • DOI: 10.1021/jp411998t

Cellulose and Hemicellulose Hydrolysis Models for Application to Current and Novel Pretreatment Processes
journal, January 2000

  • Jacobsen, Sigrid E.; Wyman, Charles E.
  • Applied Biochemistry and Biotechnology, Vol. 84-86, Issue 1-9
  • DOI: 10.1385/ABAB:84-86:1-9:81

Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates
journal, June 2014


Understanding nanocellulose chirality and structure–properties relationship at the single fibril level
journal, June 2015

  • Usov, Ivan; Nyström, Gustav; Adamcik, Jozef
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8564

Ionic Liquids and Their Interaction with Cellulose
journal, December 2009

  • Pinkert, André; Marsh, Kenneth N.; Pang, Shusheng
  • Chemical Reviews, Vol. 109, Issue 12
  • DOI: 10.1021/cr9001947

Estimation of the Persistence Length of Polymers by MD Simulations on Small Fragments in Solution. Application to Cellulose
journal, October 1997

  • Kroon-Batenburg, Loes M. J.; Kruiskamp, Peter H.; Vliegenthart, Johannes F. G.
  • The Journal of Physical Chemistry B, Vol. 101, Issue 42
  • DOI: 10.1021/jp971717k

Impact of hydration and temperature history on the structure and dynamics of lignin
journal, January 2018

  • Vural, Derya; Gainaru, Catalin; O'Neill, Hugh
  • Green Chemistry, Vol. 20, Issue 7
  • DOI: 10.1039/C7GC03796A

Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment
journal, December 2008

  • Donohoe, Bryon S.; Decker, Stephen R.; Tucker, Melvin P.
  • Biotechnology and Bioengineering, Vol. 101, Issue 5
  • DOI: 10.1002/bit.21959

Biomass pretreatment: Fundamentals toward application
journal, November 2011


Dynamics of the lignin glass transition
journal, January 2018

  • Vural, Derya; Smith, Jeremy C.; Petridis, Loukas
  • Physical Chemistry Chemical Physics, Vol. 20, Issue 31
  • DOI: 10.1039/C8CP03144D

Brief overview on cellulose dissolution/regeneration interactions and mechanisms
journal, August 2015


From lignin subunits to aggregates: insights into lignin solubilization
journal, January 2017

  • Zhao, Wenwen; Xiao, Ling-Ping; Song, Guoyong
  • Green Chemistry, Vol. 19, Issue 14
  • DOI: 10.1039/C7GC00944E

Modeling chemical and physical processes of wood and biomass pyrolysis
journal, February 2008


Re-constructing our models of cellulose and primary cell wall assembly
journal, December 2014


What Do We Really Know about Cellulose Biosynthesis in Higher Plants?
journal, February 2010


Structure of Cellulose Microfibrils in Primary Cell Walls from Collenchyma
journal, November 2012

  • Thomas, Lynne H.; Forsyth, V. Trevor; Šturcová, Adriana
  • Plant Physiology, Vol. 161, Issue 1
  • DOI: 10.1104/pp.112.206359

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.