skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Machine learning in materials design and discovery: Examples from the present and suggestions for the future

Authors:
;
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1488630
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Physical Review Materials
Additional Journal Information:
Journal Name: Physical Review Materials Journal Volume: 2 Journal Issue: 12; Journal ID: ISSN 2475-9953
Publisher:
American Physical Society
Country of Publication:
United States
Language:
English

Citation Formats

Gubernatis, J. E., and Lookman, T. Machine learning in materials design and discovery: Examples from the present and suggestions for the future. United States: N. p., 2018. Web. doi:10.1103/PhysRevMaterials.2.120301.
Gubernatis, J. E., & Lookman, T. Machine learning in materials design and discovery: Examples from the present and suggestions for the future. United States. doi:10.1103/PhysRevMaterials.2.120301.
Gubernatis, J. E., and Lookman, T. Thu . "Machine learning in materials design and discovery: Examples from the present and suggestions for the future". United States. doi:10.1103/PhysRevMaterials.2.120301.
@article{osti_1488630,
title = {Machine learning in materials design and discovery: Examples from the present and suggestions for the future},
author = {Gubernatis, J. E. and Lookman, T.},
abstractNote = {},
doi = {10.1103/PhysRevMaterials.2.120301},
journal = {Physical Review Materials},
number = 12,
volume = 2,
place = {United States},
year = {2018},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1103/PhysRevMaterials.2.120301

Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Combinatorial solid-state chemistry of inorganic materials
journal, July 2004

  • Koinuma, Hideomi; Takeuchi, Ichiro
  • Nature Materials, Vol. 3, Issue 7
  • DOI: 10.1038/nmat1157

Predictions of new AB O 3 perovskite compounds by combining machine learning and density functional theory
journal, April 2018


Hypervolume-based multiobjective optimization: Theoretical foundations and practical implications
journal, March 2012


Quantum-Defect Electronegativity Scale for Nontransition Elements
journal, October 1974


Efficient search of compositional space for hybrid organic–inorganic perovskites via Bayesian optimization
journal, September 2018


High-Dimensional Materials and Process Optimization Using Data-Driven Experimental Design with Well-Calibrated Uncertainty Estimates
journal, July 2017

  • Ling, Julia; Hutchinson, Maxwell; Antono, Erin
  • Integrating Materials and Manufacturing Innovation, Vol. 6, Issue 3
  • DOI: 10.1007/s40192-017-0098-z

New opportunities for materials informatics: Resources and data mining techniques for uncovering hidden relationships
journal, April 2016

  • Jain, Anubhav; Hautier, Geoffroy; Ong, Shyue Ping
  • Journal of Materials Research, Vol. 31, Issue 8
  • DOI: 10.1557/jmr.2016.80

Multi-objective Optimization for Materials Discovery via Adaptive Design
journal, February 2018

  • Gopakumar, Abhijith M.; Balachandran, Prasanna V.; Xue, Dezhen
  • Scientific Reports, Vol. 8, Issue 1
  • DOI: 10.1038/s41598-018-21936-3

Accelerated Discovery of Large Electrostrains in BaTiO 3 -Based Piezoelectrics Using Active Learning
journal, January 2018

  • Yuan, Ruihao; Liu, Zhen; Balachandran, Prasanna V.
  • Advanced Materials, Vol. 30, Issue 7
  • DOI: 10.1002/adma.201702884

Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides
journal, September 1976


Bayesian Analysis of Hierarchical Multifidelity Codes
journal, January 2013

  • Le Gratiet, Loic
  • SIAM/ASA Journal on Uncertainty Quantification, Vol. 1, Issue 1
  • DOI: 10.1137/120884122

The Value of Information in Spatial Decision Making
journal, December 2009

  • Bhattacharjya, Debarun; Eidsvik, Jo; Mukerji, Tapan
  • Mathematical Geosciences, Vol. 42, Issue 2
  • DOI: 10.1007/s11004-009-9256-y

Optimal Experimental Design for Gene Regulatory Networks in the Presence of Uncertainty
journal, July 2015

  • Dehghannasiri, Roozbeh; Dougherty, Edward R.
  • IEEE/ACM Transactions on Computational Biology and Bioinformatics, Vol. 12, Issue 4
  • DOI: 10.1109/TCBB.2014.2377733

On-the-fly machine-learning for high-throughput experiments: search for rare-earth-free permanent magnets
journal, September 2014

  • Kusne, Aaron Gilad; Gao, Tieren; Mehta, Apurva
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep06367

Phenomenological and microscopic theories of structural stability
journal, December 1985


Data Mined Ionic Substitutions for the Discovery of New Compounds
journal, January 2011

  • Hautier, Geoffroy; Fischer, Chris; Ehrlacher, Virginie
  • Inorganic Chemistry, Vol. 50, Issue 2
  • DOI: 10.1021/ic102031h

A New Method of Locating the Maximum Point of an Arbitrary Multipeak Curve in the Presence of Noise
journal, March 1964

  • Kushner, H. J.
  • Journal of Basic Engineering, Vol. 86, Issue 1
  • DOI: 10.1115/1.3653121

An informatics approach to transformation temperatures of NiTi-based shape memory alloys
journal, February 2017


A Review of Modern Computational Algorithms for Bayesian Optimal Design: A Review of Modern Algorithms for Bayesian Design
journal, June 2015

  • Ryan, Elizabeth G.; Drovandi, Christopher C.; McGree, James M.
  • International Statistical Review, Vol. 84, Issue 1
  • DOI: 10.1111/insr.12107

Prediction of Low-Thermal-Conductivity Compounds with First-Principles Anharmonic Lattice-Dynamics Calculations and Bayesian Optimization
journal, November 2015


Recent Developments in the Methods and Applications of the Bond Valence Model
journal, December 2009


Statistical Improvement Criteria for Use in Multiobjective Design Optimization
journal, April 2006


On a Measure of the Information Provided by an Experiment
journal, December 1956


Combinatorial approaches for high-throughput characterization of mechanical properties
journal, September 2017


The high-throughput highway to computational materials design
journal, February 2013

  • Curtarolo, Stefano; Hart, Gus L. W.; Nardelli, Marco Buongiorno
  • Nature Materials, Vol. 12, Issue 3
  • DOI: 10.1038/nmat3568

Recursive Co-Kriging Model for Design of Computer Experiments with Multiple Levels of Fidelity
journal, January 2014


On using the hypervolume indicator to compare Pareto fronts: Applications to multi-criteria optimal experimental design
journal, May 2015

  • Cao, Yongtao; Smucker, Byran J.; Robinson, Timothy J.
  • Journal of Statistical Planning and Inference, Vol. 160
  • DOI: 10.1016/j.jspi.2014.12.004

New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design
journal, May 2002

  • Belsky, Alec; Hellenbrandt, Mariette; Karen, Vicky Lynn
  • Acta Crystallographica Section B Structural Science, Vol. 58, Issue 3
  • DOI: 10.1107/S0108768102006948

Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration
journal, November 2011

  • Gražulis, Saulius; Daškevič, Adriana; Merkys, Andrius
  • Nucleic Acids Research, Vol. 40, Issue D1
  • DOI: 10.1093/nar/gkr900

Acceleration of stable interface structure searching using a kriging approach
journal, March 2016

  • Kiyohara, Shin; Oda, Hiromi; Tsuda, Koji
  • Japanese Journal of Applied Physics, Vol. 55, Issue 4
  • DOI: 10.7567/JJAP.55.045502

Multiobjective optimization of expensive-to-evaluate deterministic computer simulator models
journal, February 2016


Wave Functions, Density Functionals, and Artificial Intelligence for Materials and Energy Research: Future Prospects and Challenges
journal, November 2017


Data mining-aided materials discovery and optimization
journal, September 2017


Materials discovery and design using machine learning
journal, September 2017


High-throughput characterization methods for lithium batteries
journal, September 2017


Optimal experimental design for materials discovery
journal, March 2017


Identifying interphase properties in polymer nanocomposites using adaptive optimization
journal, July 2018


machine.
journal, October 2001


Adaptive reconstruction method for three-dimensional orientation imaging
journal, March 2013


Optimisation of GaN LEDs and the reduction of efficiency droop using active machine learning
journal, April 2016

  • Rouet-Leduc, Bertrand; Barros, Kipton; Lookman, Turab
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep24862

Prediction of the crystal structures of perovskites using the software program SPuDS
journal, November 2001

  • Lufaso, Michael W.; Woodward, Patrick M.
  • Acta Crystallographica Section B Structural Science, Vol. 57, Issue 6
  • DOI: 10.1107/S0108768101015282

Extracting Grain Orientations from EBSD Patterns of Polycrystalline Materials Using Convolutional Neural Networks
journal, October 2018

  • Jha, Dipendra; Singh, Saransh; Al-Bahrani, Reda
  • Microscopy and Microanalysis, Vol. 24, Issue 5
  • DOI: 10.1017/S1431927618015131

Adapting the Hypervolume Quality Indicator to Quantify Trade-offs and Search Efficiency for Multiple Criteria Decision Making Using Pareto Fronts
journal, September 2012

  • Lu, Lu; Anderson-Cook, Christine M.
  • Quality and Reliability Engineering International, Vol. 29, Issue 8
  • DOI: 10.1002/qre.1464

Inferring low-dimensional microstructure representations using convolutional neural networks
journal, November 2017


Accelerated search for materials with targeted properties by adaptive design
journal, April 2016

  • Xue, Dezhen; Balachandran, Prasanna V.; Hogden, John
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11241

The Existence of A Priori Distinctions Between Learning Algorithms
journal, October 1996


Materials informatics: a journey towards material design and synthesis
journal, January 2016

  • Takahashi, Keisuke; Tanaka, Yuzuru
  • Dalton Transactions, Vol. 45, Issue 26
  • DOI: 10.1039/C6DT01501H

Quantifying the Objective Cost of Uncertainty in Complex Dynamical Systems
journal, May 2013

  • Yoon, Byung-Jun; Qian, Xiaoning; Dougherty, Edward R.
  • IEEE Transactions on Signal Processing, Vol. 61, Issue 9
  • DOI: 10.1109/TSP.2013.2251336

On the crystal chemistry of normal valence compounds
journal, December 1959


A Knowledge-Gradient Policy for Sequential Information Collection
journal, January 2008

  • Frazier, Peter I.; Powell, Warren B.; Dayanik, Savas
  • SIAM Journal on Control and Optimization, Vol. 47, Issue 5
  • DOI: 10.1137/070693424

The Lack of A Priori Distinctions Between Learning Algorithms
journal, October 1996


Selecting the selector: Comparison of update rules for discrete global optimization: THEILER AND ZIMMER
journal, May 2017

  • Theiler, James; Zimmer, Beate G.
  • Statistical Analysis and Data Mining: The ASA Data Science Journal, Vol. 10, Issue 4
  • DOI: 10.1002/sam.11343

Classification of AB O 3 perovskite solids: a machine learning study
journal, September 2015

  • Pilania, G.; Balachandran, P. V.; Gubernatis, J. E.
  • Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, Vol. 71, Issue 5
  • DOI: 10.1107/S2052520615013979

Why Does Deep and Cheap Learning Work So Well?
journal, July 2017

  • Lin, Henry W.; Tegmark, Max; Rolnick, David
  • Journal of Statistical Physics, Vol. 168, Issue 6
  • DOI: 10.1007/s10955-017-1836-5

Multi-fidelity machine learning models for accurate bandgap predictions of solids
journal, March 2017


Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

The optimal one dimensional periodic table: a modified Pettifor chemical scale from data mining
journal, September 2016


Data-driven atomic environment prediction for binaries using the Mendeleev number
journal, March 2004


Structure classification and melting temperature prediction in octet AB solids via machine learning
journal, June 2015


Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD)
journal, September 2013


Multifunctional structural design of graphene thermoelectrics by Bayesian optimization
journal, June 2018

  • Yamawaki, Masaki; Ohnishi, Masato; Ju, Shenghong
  • Science Advances, Vol. 4, Issue 6
  • DOI: 10.1126/sciadv.aar4192

No free lunch theorems for optimization
journal, April 1997

  • Wolpert, D. H.; Macready, W. G.
  • IEEE Transactions on Evolutionary Computation, Vol. 1, Issue 1
  • DOI: 10.1109/4235.585893

Machine Learning Strategy for Accelerated Design of Polymer Dielectrics
journal, February 2016

  • Mannodi-Kanakkithodi, Arun; Pilania, Ghanshyam; Huan, Tran Doan
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep20952

Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models
journal, March 2006


Adaptive Strategies for Materials Design using Uncertainties
journal, January 2016

  • Balachandran, Prasanna V.; Xue, Dezhen; Theiler, James
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep19660

Materials Screening for the Discovery of New Half-Heuslers: Machine Learning versus ab Initio Methods
journal, August 2017

  • Legrain, Fleur; Carrete, Jesús; van Roekeghem, Ambroise
  • The Journal of Physical Chemistry B, Vol. 122, Issue 2
  • DOI: 10.1021/acs.jpcb.7b05296

Multi-objective optimization techniques to design the Pareto front of organic dielectric polymers
journal, December 2016


Machine learning for molecular and materials science
journal, July 2018


The thermodynamic scale of inorganic crystalline metastability
journal, November 2016

  • Sun, Wenhao; Dacek, Stephen T.; Ong, Shyue Ping
  • Science Advances, Vol. 2, Issue 11
  • DOI: 10.1126/sciadv.1600225

Random Forests
journal, January 2001


Bayesian Experimental Design: A Review
journal, August 1995

  • Chaloner, Kathryn; Verdinelli, Isabella
  • Statistical Science, Vol. 10, Issue 3
  • DOI: 10.1214/ss/1177009939

Optimal Learning in Experimental Design Using the Knowledge Gradient Policy with Application to Characterizing Nanoemulsion Stability
journal, January 2015

  • Chen, Si; Reyes, Kristofer-Roy G.; Gupta, Maneesh K.
  • SIAM/ASA Journal on Uncertainty Quantification, Vol. 3, Issue 1
  • DOI: 10.1137/140971129