skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Stellar Ar 36 , 38 ( n , γ ) Ar 37 , 39 Reactions and Their Effect on Light Neutron-Rich Nuclide Synthesis

Abstract

Here, the 36Ar(n,γ) 37Ar (t 1/2 = 35 d) and 38Ar(n,γ) 39Ar (269 yr) reactions were studied for the first time with a quasi-Maxwellian (kT ~ 47 keV) neutron flux for Maxwellian average cross section (MACS) measurements at stellar energies. Gas samples were irradiated at the high-intensity Soreq applied research accelerator facility-liquid-lithium target neutron source and the 37Ar/ 36Ar and 39Ar/ 38Ar ratios in the activated samples were determined by accelerator mass spectrometry at the ATLAS facility (Argonne National Laboratory). The 37Ar activity was also measured by low-level counting at the University of Bern. Experimental MACS of 36Ar and 38Ar, corrected to the standard 30 keV thermal energy, are 1.9(3) and 1.3(2) mb, respectively, differing from the theoretical and evaluated values published to date by up to an order of magnitude. The neutron-capture cross sections of 36,38Ar are relevant to the stellar nucleosynthesis of light neutron-rich nuclides; the two experimental values are shown to affect the calculated mass fraction of nuclides in the region A = 36 – 48 during the weak s process. Finally, the new production cross sections have implications also for the use of 37Ar and 39Ar as environmental tracers in the atmosphere and hydrosphere.

Authors:
 [1];  [1];  [2];  [3];  [4];  [5];  [4];  [4];  [6];  [2];  [4];  [4];  [5];  [7];  [2];  [7];  [2];  [2];  [6];  [8] more »;  [2];  [2];  [4];  [6];  [4] « less
  1. Hebrew Univ. of Jerusalem (Israel)
  2. Soreq NRC, Yavne (Israel)
  3. Clemson Univ., SC (United States)
  4. Argonne National Lab. (ANL), Argonne, IL (United States)
  5. University of Bern (Switzerland)
  6. Goethe Univ., Frankfurt (Germany)
  7. Univ. of Notre Dame, IN (United States)
  8. Argonne National Lab. (ANL), Argonne, IL (United States); Louisiana State Univ., Baton Rouge, LA (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Nuclear Physics (NP) (SC-26); European Commission - Community Research and Development Information Service (CORDIS) - Seventh Framework Programme (FP7)
OSTI Identifier:
1488573
Grant/Contract Number:  
AC02-06CH11357; FG02-96ER40978
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 121; Journal Issue: 11; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
73 NUCLEAR PHYSICS AND RADIATION PHYSICS

Citation Formats

Tessler, M., Paul, M., Halfon, S., Meyer, B. S., Pardo, R., Purtschert, R., Rehm, K. E., Scott, R., Weigand, M., Weissman, L., Almaraz-Calderon, S., Avila, M. L., Baggenstos, D., Collon, P., Hazenshprung, N., Kashiv, Y., Kijel, D., Kreisel, A., Reifarth, R., Santiago-Gonzalez, D., Shor, A., Silverman, I., Talwar, R., Veltum, D., and Vondrasek, R. Stellar Ar36,38(n,γ)Ar37,39 Reactions and Their Effect on Light Neutron-Rich Nuclide Synthesis. United States: N. p., 2018. Web. doi:10.1103/PhysRevLett.121.112701.
Tessler, M., Paul, M., Halfon, S., Meyer, B. S., Pardo, R., Purtschert, R., Rehm, K. E., Scott, R., Weigand, M., Weissman, L., Almaraz-Calderon, S., Avila, M. L., Baggenstos, D., Collon, P., Hazenshprung, N., Kashiv, Y., Kijel, D., Kreisel, A., Reifarth, R., Santiago-Gonzalez, D., Shor, A., Silverman, I., Talwar, R., Veltum, D., & Vondrasek, R. Stellar Ar36,38(n,γ)Ar37,39 Reactions and Their Effect on Light Neutron-Rich Nuclide Synthesis. United States. doi:10.1103/PhysRevLett.121.112701.
Tessler, M., Paul, M., Halfon, S., Meyer, B. S., Pardo, R., Purtschert, R., Rehm, K. E., Scott, R., Weigand, M., Weissman, L., Almaraz-Calderon, S., Avila, M. L., Baggenstos, D., Collon, P., Hazenshprung, N., Kashiv, Y., Kijel, D., Kreisel, A., Reifarth, R., Santiago-Gonzalez, D., Shor, A., Silverman, I., Talwar, R., Veltum, D., and Vondrasek, R. Tue . "Stellar Ar36,38(n,γ)Ar37,39 Reactions and Their Effect on Light Neutron-Rich Nuclide Synthesis". United States. doi:10.1103/PhysRevLett.121.112701. https://www.osti.gov/servlets/purl/1488573.
@article{osti_1488573,
title = {Stellar Ar36,38(n,γ)Ar37,39 Reactions and Their Effect on Light Neutron-Rich Nuclide Synthesis},
author = {Tessler, M. and Paul, M. and Halfon, S. and Meyer, B. S. and Pardo, R. and Purtschert, R. and Rehm, K. E. and Scott, R. and Weigand, M. and Weissman, L. and Almaraz-Calderon, S. and Avila, M. L. and Baggenstos, D. and Collon, P. and Hazenshprung, N. and Kashiv, Y. and Kijel, D. and Kreisel, A. and Reifarth, R. and Santiago-Gonzalez, D. and Shor, A. and Silverman, I. and Talwar, R. and Veltum, D. and Vondrasek, R.},
abstractNote = {Here, the 36Ar(n,γ) 37Ar (t1/2 = 35 d) and 38Ar(n,γ) 39Ar (269 yr) reactions were studied for the first time with a quasi-Maxwellian (kT ~ 47 keV) neutron flux for Maxwellian average cross section (MACS) measurements at stellar energies. Gas samples were irradiated at the high-intensity Soreq applied research accelerator facility-liquid-lithium target neutron source and the 37Ar/36Ar and 39Ar/38Ar ratios in the activated samples were determined by accelerator mass spectrometry at the ATLAS facility (Argonne National Laboratory). The 37Ar activity was also measured by low-level counting at the University of Bern. Experimental MACS of 36Ar and 38Ar, corrected to the standard 30 keV thermal energy, are 1.9(3) and 1.3(2) mb, respectively, differing from the theoretical and evaluated values published to date by up to an order of magnitude. The neutron-capture cross sections of 36,38Ar are relevant to the stellar nucleosynthesis of light neutron-rich nuclides; the two experimental values are shown to affect the calculated mass fraction of nuclides in the region A = 36 – 48 during the weak s process. Finally, the new production cross sections have implications also for the use of 37Ar and 39Ar as environmental tracers in the atmosphere and hydrosphere.},
doi = {10.1103/PhysRevLett.121.112701},
journal = {Physical Review Letters},
number = 11,
volume = 121,
place = {United States},
year = {2018},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Nuclear Data Sheets for A=40
journal, February 2017


The Soreq Applied Research Accelerator Facility (SARAF): Overview, research programs and future plans
journal, May 2018

  • Mardor, Israel; Aviv, Ofer; Avrigeanu, Marilena
  • The European Physical Journal A, Vol. 54, Issue 5
  • DOI: 10.1140/epja/i2018-12526-2

Heavy ion separation with a gas-filled magnetic spectrograph
journal, May 1989

  • Paul, Michael; Glagola, Bruce G.; Henning, Walter
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 277, Issue 2-3
  • DOI: 10.1016/0168-9002(89)90771-7

The Thermal Neutron-Capture Cross Section of A 36
journal, March 1950


Mars and Earth: Origin and Abundance of Volatiles
journal, November 1977


Modern Nuclear Data Evaluation with the TALYS Code System
journal, December 2012


Astrophysical Reaction Rates From Statistical Model Calculations
journal, May 2000

  • Rauscher, Thomas; Thielemann, Friedrich-Karl
  • Atomic Data and Nuclear Data Tables, Vol. 75, Issue 1-2
  • DOI: 10.1006/adnd.2000.0834

On the 14 C and 39 Ar Distribution in the Central Arctic Ocean: Implications for Deep Water Formation
journal, January 1994


A dating method with39Ar
journal, April 1983


Ten years low-level counting in the underground laboratoryin in Bern, Switzerland
journal, November 1986

  • Loosli, H. H.; Möll, M.; Oeschger, H.
  • Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 17, Issue 5-6
  • DOI: 10.1016/0168-583X(86)90172-2

Semiempirical thermonuclear reaction-rate data for intermediate-mass nuclei
journal, November 1978


ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data
journal, December 2011


Nuclear Data Sheets for A = 37
journal, February 2012


Stellar ( n , γ ) Cross Section of N i 62
journal, March 2005


Reducing potassium contamination for AMS detection of 39Ar with an electron-cyclotron-resonance ion source
journal, July 2012

  • Collon, P.; Bowers, M.; Calaprice, F.
  • Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 283
  • DOI: 10.1016/j.nimb.2012.04.020

Tracing Noble gas Radionuclides in the Environment
journal, December 2004


High pressure gas spheres for neutron and photon experiments
journal, September 2009

  • Rupp, G.; Petrich, D.; Käppeler, F.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 608, Issue 1
  • DOI: 10.1016/j.nima.2009.06.098

The Reaction Rate Sensitivity of Nucleosynthesis in Type II Supernovae
journal, August 1999

  • Hoffman, R. D.; Woosley, S. E.; Weaver, T. A.
  • The Astrophysical Journal, Vol. 521, Issue 2
  • DOI: 10.1086/307568

Development of an AMS method to study oceanic circulation characteristics using cosmogenic 39Ar
journal, August 2004

  • Collon, Ph; Bichler, M.; Caggiano, J.
  • Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 223-224
  • DOI: 10.1016/j.nimb.2004.04.081

A review of the homestake solar neutrino experiment
journal, January 1994


Nuclear Data Sheets for A = 39
journal, February 2006


Quasi-stellar neutrons from the 7 Li( p , n ) 7 Be reaction with an energy-broadened proton beam
journal, May 2012


Solar System Abundances and Condensation Temperatures of the Elements
journal, July 2003

  • Lodders, Katharina
  • The Astrophysical Journal, Vol. 591, Issue 2
  • DOI: 10.1086/375492

Natural 37 Ar Concentrations in Soil Air: Implications for Monitoring Underground Nuclear Explosions
journal, October 2011

  • Riedmann, Robin A.; Purtschert, Roland
  • Environmental Science & Technology, Vol. 45, Issue 20
  • DOI: 10.1021/es201192u

Geant4—a simulation toolkit
journal, July 2003

  • Agostinelli, S.; Allison, J.; Amako, K.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 506, Issue 3
  • DOI: 10.1016/S0168-9002(03)01368-8

A radiogenic heating evolution model for cosmochemically Earth-like exoplanets
journal, November 2014


Argon 37, argon 39, and krypton 81 in the atmosphere and tracer studies based on these isotopes
journal, May 1970

  • Loosli, H. H.; Oeschger, H.; Wiest, W.
  • Journal of Geophysical Research, Vol. 75, Issue 15
  • DOI: 10.1029/JC075i015p02895

M L Orbital-Electron-Capture Ratio in Ar 37 Decay and the Fraction of K α X Rays in the K Series of Chlorine
journal, February 1968


High-power liquid-lithium jet target for neutron production
journal, December 2013

  • Halfon, S.; Arenshtam, A.; Kijel, D.
  • Review of Scientific Instruments, Vol. 84, Issue 12
  • DOI: 10.1063/1.4847158

The Stellar Neutron‐Capture Rate of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $^{34}$ \end{document} S: The Origin of \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $^{36}$ \end{document} S Challenged
journal, January 2000

  • Reifarth, R.; Schwarz, K.; Kappeler, F.
  • The Astrophysical Journal, Vol. 528, Issue 1
  • DOI: 10.1086/308175

Synthesis of the Elements in Stars
journal, October 1957

  • Burbidge, E. Margaret; Burbidge, G. R.; Fowler, William A.
  • Reviews of Modern Physics, Vol. 29, Issue 4
  • DOI: 10.1103/RevModPhys.29.547

Note: Proton irradiation at kilowatt-power and neutron production from a free-surface liquid-lithium target
journal, May 2014

  • Halfon, S.; Arenshtam, A.; Kijel, D.
  • Review of Scientific Instruments, Vol. 85, Issue 5
  • DOI: 10.1063/1.4878627

Simulation of the neutron spectrum from the 7Li(p,n) reaction with a liquid-lithium target at Soreq Applied Research Accelerator Facility
journal, January 2013

  • Friedman, M.; Cohen, D.; Paul, M.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 698
  • DOI: 10.1016/j.nima.2012.09.027

Thermal Neutron Capture Cross Section of A 40 and Observation of A 42
journal, September 1952