skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Designing Lithium-Sulfur Cells with Practically Necessary Parameters

Abstract

Here, the capacity limitation of insertion-compound cathodes hampers the development of high-energy-density lithium-ion batteries and thus has generated immense interest in conversion-reaction cathodes, such as sulfur. With no restriction to maintain their initial physicochemical properties, sulfur cathodes offer a high theoretical capacity (1,675 mA hr g–1). However, the amounts of sulfur and electrolyte that drastically affect the battery electrochemistry have been ignored for years; thereby, the cathode performances have often been overrated.

Authors:
 [1];  [1]
  1. Univ. of Texas at Austin, Austin, TX (United States)
Publication Date:
Research Org.:
Univ. of Texas, Austin, TX (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1488316
Grant/Contract Number:  
EE0007218
Resource Type:
Accepted Manuscript
Journal Name:
Joule
Additional Journal Information:
Journal Volume: 2; Journal Issue: 4; Journal ID: ISSN 2542-4351
Publisher:
Elsevier - Cell Press
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 36 MATERIALS SCIENCE; lithium-sulfur batteries; high sulfur loading; high sulfur content; low electrolyte amount; cycle life

Citation Formats

Chung, Sheng -Heng, and Manthiram, Arumugam. Designing Lithium-Sulfur Cells with Practically Necessary Parameters. United States: N. p., 2018. Web. https://doi.org/10.1016/j.joule.2018.01.002.
Chung, Sheng -Heng, & Manthiram, Arumugam. Designing Lithium-Sulfur Cells with Practically Necessary Parameters. United States. https://doi.org/10.1016/j.joule.2018.01.002
Chung, Sheng -Heng, and Manthiram, Arumugam. Thu . "Designing Lithium-Sulfur Cells with Practically Necessary Parameters". United States. https://doi.org/10.1016/j.joule.2018.01.002. https://www.osti.gov/servlets/purl/1488316.
@article{osti_1488316,
title = {Designing Lithium-Sulfur Cells with Practically Necessary Parameters},
author = {Chung, Sheng -Heng and Manthiram, Arumugam},
abstractNote = {Here, the capacity limitation of insertion-compound cathodes hampers the development of high-energy-density lithium-ion batteries and thus has generated immense interest in conversion-reaction cathodes, such as sulfur. With no restriction to maintain their initial physicochemical properties, sulfur cathodes offer a high theoretical capacity (1,675 mA hr g–1). However, the amounts of sulfur and electrolyte that drastically affect the battery electrochemistry have been ignored for years; thereby, the cathode performances have often been overrated.},
doi = {10.1016/j.joule.2018.01.002},
journal = {Joule},
number = 4,
volume = 2,
place = {United States},
year = {2018},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 63 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Morphology and microstructure analysis of CGCC cathode. (a) Illustration of the synthesis route. (b) Low-magnification SEM/EDS inspections of CGCC. Scale bar: 10 μm. (c) High-magnification SEM/EDS inspections of CGCC. Scale bar: 2 μm (d) SEM/EDS inspections of freshly-made CGCC cathode. Scale bar: 10 μm. Scale bar in themore » inset: 1 μm. (e) SEM/EDS inspections of cycled CGCC cathodes. Scale bar: 10 μm. Scale bar in the inset: 1 μm. See also Figures S1 and S2.« less

Save / Share:

Works referenced in this record:

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Lithium-Sulfur Batteries: Progress and Prospects
journal, February 2015

  • Manthiram, Arumugam; Chung, Sheng-Heng; Zu, Chenxi
  • Advanced Materials, Vol. 27, Issue 12
  • DOI: 10.1002/adma.201405115

Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes
journal, September 2016


Critical Link between Materials Chemistry and Cell-Level Design for High Energy Density and Low Cost Lithium-Sulfur Transportation Battery
journal, January 2015

  • Eroglu, Damla; Zavadil, Kevin R.; Gallagher, Kevin G.
  • Journal of The Electrochemical Society, Vol. 162, Issue 6
  • DOI: 10.1149/2.0611506jes

Lithium-Sulfur Cells: The Gap between the State-of-the-Art and the Requirements for High Energy Battery Cells
journal, April 2015

  • Hagen, Markus; Hanselmann, Dominik; Ahlbrecht, Katharina
  • Advanced Energy Materials, Vol. 5, Issue 16, 1401986
  • DOI: 10.1002/aenm.201401986

A review of electrolytes for lithium–sulphur batteries
journal, June 2014


Cell energy density and electrolyte/sulfur ratio in Li–S cells
journal, October 2014


Attainable Gravimetric and Volumetric Energy Density of Li–S and Li Ion Battery Cells with Solid Separator-Protected Li Metal Anodes
journal, October 2015


Review on High-Loading and High-Energy Lithium-Sulfur Batteries
journal, May 2017

  • Peng, Hong-Jie; Huang, Jia-Qi; Cheng, Xin-Bing
  • Advanced Energy Materials, Vol. 7, Issue 24
  • DOI: 10.1002/aenm.201700260

A core–shell electrode for dynamically and statically stable Li–S battery chemistry
journal, January 2016

  • Chung, Sheng-Heng; Chang, Chi-Hao; Manthiram, Arumugam
  • Energy & Environmental Science, Vol. 9, Issue 10
  • DOI: 10.1039/C6EE01280A

Lithium–Sulfur Batteries with the Lowest Self-Discharge and the Longest Shelf life
journal, April 2017


Polysulfide Shuttle Study in the Li/S Battery System
journal, January 2004

  • Mikhaylik, Yuriy V.; Akridge, James R.
  • Journal of The Electrochemical Society, Vol. 151, Issue 11, p. A1969-A1976
  • DOI: 10.1149/1.1806394

Improving Lithium–Sulfur Battery Performance under Lean Electrolyte through Nanoscale Confinement in Soft Swellable Gels
journal, April 2017


Organotrisulfide: A High Capacity Cathode Material for Rechargeable Lithium Batteries
journal, July 2016

  • Wu, Min; Cui, Yi; Bhargav, Amruth
  • Angewandte Chemie International Edition, Vol. 55, Issue 34
  • DOI: 10.1002/anie.201603897

Li-ion battery materials: present and future
journal, June 2015


Lithium-Sulfur Batteries: Electrochemistry, Materials, and Prospects
journal, November 2013

  • Yin, Ya-Xia; Xin, Sen; Guo, Yu-Guo
  • Angewandte Chemie International Edition, Vol. 52, Issue 50
  • DOI: 10.1002/anie.201304762

High Energy Density Lithium-Sulfur Batteries: Challenges of Thick Sulfur Cathodes
journal, March 2015

  • Lv, Dongping; Zheng, Jianming; Li, Qiuyan
  • Advanced Energy Materials, Vol. 5, Issue 16, Article No. 1402290
  • DOI: 10.1002/aenm.201402290

A review of flexible lithium–sulfur and analogous alkali metal–chalcogen rechargeable batteries
journal, January 2017

  • Peng, Hong-Jie; Huang, Jia-Qi; Zhang, Qiang
  • Chemical Society Reviews, Vol. 46, Issue 17
  • DOI: 10.1039/C7CS00139H

Understanding the Lithium Sulfur Battery System at Relevant Scales
journal, August 2015


Sol–gel encapsulated lithium polysulfide catholyte and its application in lithium–sulfur batteries
journal, January 2016

  • Smith, Leland C.; Malati, Peter; Fang, Jonathan
  • Materials Horizons, Vol. 3, Issue 2
  • DOI: 10.1039/C5MH00228A

Multifunctional Separator Coatings for High-Performance Lithium-Sulfur Batteries
journal, August 2016

  • Kim, Mun Sek; Ma, Lin; Choudhury, Snehashis
  • Advanced Materials Interfaces, Vol. 3, Issue 22
  • DOI: 10.1002/admi.201600450

More Reliable Lithium-Sulfur Batteries: Status, Solutions and Prospects
journal, April 2017

  • Fang, Ruopian; Zhao, Shiyong; Sun, Zhenhua
  • Advanced Materials, Vol. 29, Issue 48
  • DOI: 10.1002/adma.201606823

A review of recent developments in rechargeable lithium–sulfur batteries
journal, January 2016

  • Kang, Weimin; Deng, Nanping; Ju, Jingge
  • Nanoscale, Vol. 8, Issue 37
  • DOI: 10.1039/C6NR04923K

Rational designs and engineering of hollow micro-/nanostructures as sulfur hosts for advanced lithium–sulfur batteries
journal, January 2016

  • Li, Zhen; Wu, Hao Bin; (David) Lou, Xiong Wen
  • Energy & Environmental Science, Vol. 9, Issue 10
  • DOI: 10.1039/C6EE02364A

Carbonized Eggshell Membrane as a Natural Polysulfide Reservoir for Highly Reversible Li-S Batteries
journal, November 2013


A Carbon-Cotton Cathode with Ultrahigh-Loading Capability for Statically and Dynamically Stable Lithium–Sulfur Batteries
journal, October 2016


Healing High-Loading Sulfur Electrodes with Unprecedented Long Cycling Life: Spatial Heterogeneity Control
journal, March 2017

  • Peng, Hong-Jie; Huang, Jia-Qi; Liu, Xin-Yan
  • Journal of the American Chemical Society, Vol. 139, Issue 25
  • DOI: 10.1021/jacs.6b12358

Nanostructured positive electrode materials for post-lithium ion batteries
journal, January 2016

  • Wang, Faxing; Wu, Xiongwei; Li, Chunyang
  • Energy & Environmental Science, Vol. 9, Issue 12
  • DOI: 10.1039/C6EE02070D

On a Theory of the van der Waals Adsorption of Gases
journal, July 1940

  • Brunauer, Stephen; Deming, Lola S.; Deming, W. Edwards
  • Journal of the American Chemical Society, Vol. 62, Issue 7
  • DOI: 10.1021/ja01864a025

The use of nitrogen adsorption for the characterisation of porous materials
journal, August 2001


Method for the calculation of effective pore size distribution in molecular sieve carbon.
journal, January 1983

  • HorvÁTh, GÉZa; Kawazoe, Kunitaro
  • Journal of Chemical Engineering of Japan, Vol. 16, Issue 6
  • DOI: 10.1252/jcej.16.470

Raman Spectrum of Graphene and Graphene Layers
journal, October 2006


The reduction of graphene oxide
journal, August 2012


Raman fingerprint of doping due to metal adsorbates on graphene
journal, July 2012


A Compact Nanoconfined Sulfur Cathode for High-Performance Lithium-Sulfur Batteries
journal, November 2017


High-throughput solution processing of large-scale graphene
journal, November 2008

  • Tung, Vincent C.; Allen, Matthew J.; Yang, Yang
  • Nature Nanotechnology, Vol. 4, Issue 1
  • DOI: 10.1038/nnano.2008.329

    Works referencing / citing this record:

    The Radical Pathway Based on a Lithium‐Metal‐Compatible High‐Dielectric Electrolyte for Lithium–Sulfur Batteries
    journal, December 2018

    • Zhang, Ge; Peng, Hong‐Jie; Zhao, Chen‐Zi
    • Angewandte Chemie International Edition, Vol. 57, Issue 51
    • DOI: 10.1002/anie.201810132

    ZnS coating of cathode facilitates lean‐electrolyte Li‐S batteries
    journal, October 2019

    • Shin, Woochul; Lu, Jun; Ji, Xiulei
    • Carbon Energy, Vol. 1, Issue 2
    • DOI: 10.1002/cey2.10

    Progress on the Critical Parameters for Lithium-Sulfur Batteries to be Practically Viable
    journal, May 2018

    • Chung, Sheng-Heng; Chang, Chi-Hao; Manthiram, Arumugam
    • Advanced Functional Materials, Vol. 28, Issue 28
    • DOI: 10.1002/adfm.201801188

    A simple and general approach for in situ synthesis of sulfur–porous carbon composites for lithium–sulfur batteries
    journal, January 2019

    • Díez, Noel; Ferrero, Guillermo A.; Sevilla, Marta
    • Sustainable Energy & Fuels, Vol. 3, Issue 12
    • DOI: 10.1039/c9se00722a

    A Facile, Low-Cost Hot-Pressing Process for Fabricating Lithium-Sulfur Cells with Stable Dynamic and Static Electrochemistry
    journal, October 2018

    • Chung, Sheng-Heng; Lai, Ke-Yu; Manthiram, Arumugam
    • Advanced Materials, Vol. 30, Issue 46
    • DOI: 10.1002/adma.201805571

    Dictating High‐Capacity Lithium–Sulfur Batteries through Redox‐Mediated Lithium Sulfide Growth
    journal, June 2019


    The Radical Pathway Based on a Lithium‐Metal‐Compatible High‐Dielectric Electrolyte for Lithium–Sulfur Batteries
    journal, December 2018

    • Zhang, Ge; Peng, Hong‐Jie; Zhao, Chen‐Zi
    • Angewandte Chemie, Vol. 130, Issue 51
    • DOI: 10.1002/ange.201810132

    Stabilization of Li–S batteries with a lean electrolyte via ion-exchange trapping of lithium polysulfides using a cationic, polybenzimidazolium binder
    journal, January 2020

    • Pham, Chuyen Van; Liu, Lili; Britton, Benjamin
    • Sustainable Energy & Fuels, Vol. 4, Issue 3
    • DOI: 10.1039/c9se01092k

    Bridging the academic and industrial metrics for next-generation practical batteries
    journal, February 2019


    Nitrogen–sulfur dual-doped porous carbon spheres/sulfur composites for high-performance lithium–sulfur batteries
    journal, January 2019

    • Zhao, Liping; Liu, Gang; Zhang, Peng
    • RSC Advances, Vol. 9, Issue 29
    • DOI: 10.1039/c9ra00768g

    A sustainable sulfur–carbonaceous composite electrode toward high specific energy rechargeable cells
    journal, January 2020

    • Hwa, Yoon; Kim, Hyo Won; Shen, Hao
    • Materials Horizons, Vol. 7, Issue 2
    • DOI: 10.1039/c9mh01224a

    How Far Away Are Lithium-Sulfur Batteries From Commercialization?
    journal, November 2019


    Rational design of two-dimensional nanomaterials for lithium–sulfur batteries
    journal, January 2020

    • Jana, Milan; Xu, Rui; Cheng, Xin-Bing
    • Energy & Environmental Science, Vol. 13, Issue 4
    • DOI: 10.1039/c9ee02049g

    Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries
    journal, October 2018


    Visualization of regulated nucleation and growth of lithium sulfides for high energy lithium sulfur batteries
    journal, January 2019

    • Xu, Zheng-Long; Kim, Sung Joo; Chang, Donghee
    • Energy & Environmental Science, Vol. 12, Issue 10
    • DOI: 10.1039/c9ee01338e

    Sulfur Redox Reactions at Working Interfaces in Lithium-Sulfur Batteries: A Perspective
    journal, January 2019

    • Yuan, Hong; Peng, Hong-Jie; Huang, Jia-Qi
    • Advanced Materials Interfaces, Vol. 6, Issue 4
    • DOI: 10.1002/admi.201802046

    Current Status and Future Prospects of Metal–Sulfur Batteries
    journal, May 2019


      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.