DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Synthesis and Physical Properties of Phase-Engineered Transition Metal Dichalcogenide Monolayer Heterostructures

Abstract

Heterostructures of transition metal dichalcogenides (TMDs) offer the attractive prospect of combining distinct physical properties derived from different TMD structures. Here, we report direct chemical vapor deposition of in-plane monolayer heterostructures based on 1H-MoS2 and 1T'-MoTe2. The large lattice mismatch between these materials led to intriguing phenomena at their interface. Atomic force microscopy indicated buckling in the 1H region. Tip-enhanced Raman spectroscopy showed mode structure consistent with Te substitution in the 1H region during 1T'-MoTe2 growth. This was confirmed by atomic resolution transmission electron microscopy, which also revealed an atomically stitched, dislocation-free 1H/1T' interface. Theoretical modeling revealed that both the buckling and absence of interfacial misfit dislocations were explained by lateral gradients in Te substitution levels within the 1H region and elastic coupling between 1H and 1T' domains. Phase field simulations predicted 1T' morphologies with spike-shaped islands at specific orientations consistent with experiments. Electrical measurements across the heterostructure confirmed its electrical continuity. This work demonstrates the feasibility of dislocation-free stitching of two different atomic configurations and a pathway toward direct synthesis of monolayer TMD heterostructures of different phases.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1]; ORCiD logo [1];  [1];  [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1]
  1. Univ. of Pennsylvania, Philadelphia, PA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1487450
Grant/Contract Number:  
SC0012575; FG02-07ER15920
Resource Type:
Accepted Manuscript
Journal Name:
ACS Nano
Additional Journal Information:
Journal Volume: 11; Journal Issue: 9; Journal ID: ISSN 1936-0851
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; chemical vapor deposition; heterostructure; monolayer; phase engineering; two-dimensional materials

Citation Formats

Naylor, Carl H., Parkin, William M., Gao, Zhaoli, Berry, Joel, Zhou, Songsong, Zhang, Qicheng, McClimon, John Brandon, Tan, Liang Z., Kehayias, Christopher E., Zhao, Meng-Qiang, Gona, Ram S., Carpick, Robert W., Rappe, Andrew M., Srolovitz, David J., Drndic, Marija, and Johnson, Alan T. Charlie. Synthesis and Physical Properties of Phase-Engineered Transition Metal Dichalcogenide Monolayer Heterostructures. United States: N. p., 2017. Web. doi:10.1021/acsnano.7b03828.
Naylor, Carl H., Parkin, William M., Gao, Zhaoli, Berry, Joel, Zhou, Songsong, Zhang, Qicheng, McClimon, John Brandon, Tan, Liang Z., Kehayias, Christopher E., Zhao, Meng-Qiang, Gona, Ram S., Carpick, Robert W., Rappe, Andrew M., Srolovitz, David J., Drndic, Marija, & Johnson, Alan T. Charlie. Synthesis and Physical Properties of Phase-Engineered Transition Metal Dichalcogenide Monolayer Heterostructures. United States. https://doi.org/10.1021/acsnano.7b03828
Naylor, Carl H., Parkin, William M., Gao, Zhaoli, Berry, Joel, Zhou, Songsong, Zhang, Qicheng, McClimon, John Brandon, Tan, Liang Z., Kehayias, Christopher E., Zhao, Meng-Qiang, Gona, Ram S., Carpick, Robert W., Rappe, Andrew M., Srolovitz, David J., Drndic, Marija, and Johnson, Alan T. Charlie. Wed . "Synthesis and Physical Properties of Phase-Engineered Transition Metal Dichalcogenide Monolayer Heterostructures". United States. https://doi.org/10.1021/acsnano.7b03828. https://www.osti.gov/servlets/purl/1487450.
@article{osti_1487450,
title = {Synthesis and Physical Properties of Phase-Engineered Transition Metal Dichalcogenide Monolayer Heterostructures},
author = {Naylor, Carl H. and Parkin, William M. and Gao, Zhaoli and Berry, Joel and Zhou, Songsong and Zhang, Qicheng and McClimon, John Brandon and Tan, Liang Z. and Kehayias, Christopher E. and Zhao, Meng-Qiang and Gona, Ram S. and Carpick, Robert W. and Rappe, Andrew M. and Srolovitz, David J. and Drndic, Marija and Johnson, Alan T. Charlie},
abstractNote = {Heterostructures of transition metal dichalcogenides (TMDs) offer the attractive prospect of combining distinct physical properties derived from different TMD structures. Here, we report direct chemical vapor deposition of in-plane monolayer heterostructures based on 1H-MoS2 and 1T'-MoTe2. The large lattice mismatch between these materials led to intriguing phenomena at their interface. Atomic force microscopy indicated buckling in the 1H region. Tip-enhanced Raman spectroscopy showed mode structure consistent with Te substitution in the 1H region during 1T'-MoTe2 growth. This was confirmed by atomic resolution transmission electron microscopy, which also revealed an atomically stitched, dislocation-free 1H/1T' interface. Theoretical modeling revealed that both the buckling and absence of interfacial misfit dislocations were explained by lateral gradients in Te substitution levels within the 1H region and elastic coupling between 1H and 1T' domains. Phase field simulations predicted 1T' morphologies with spike-shaped islands at specific orientations consistent with experiments. Electrical measurements across the heterostructure confirmed its electrical continuity. This work demonstrates the feasibility of dislocation-free stitching of two different atomic configurations and a pathway toward direct synthesis of monolayer TMD heterostructures of different phases.},
doi = {10.1021/acsnano.7b03828},
journal = {ACS Nano},
number = 9,
volume = 11,
place = {United States},
year = {Wed Aug 02 00:00:00 EDT 2017},
month = {Wed Aug 02 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 35 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Van der Waals heterostructures
journal, July 2013

  • Geim, A. K.; Grigorieva, I. V.
  • Nature, Vol. 499, Issue 7459, p. 419-425
  • DOI: 10.1038/nature12385

Recent Advances in Two-Dimensional Materials beyond Graphene
journal, October 2015


Beyond Graphene: Progress in Novel Two-Dimensional Materials and van der Waals Solids
journal, July 2015


Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges
journal, January 2015

  • Duan, Xidong; Wang, Chen; Pan, Anlian
  • Chemical Society Reviews, Vol. 44, Issue 24
  • DOI: 10.1039/C5CS00507H

Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
journal, November 2012

  • Wang, Qing Hua; Kalantar-Zadeh, Kourosh; Kis, Andras
  • Nature Nanotechnology, Vol. 7, Issue 11, p. 699-712
  • DOI: 10.1038/nnano.2012.193

The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets
journal, April 2013

  • Chhowalla, Manish; Shin, Hyeon Suk; Eda, Goki
  • Nature Chemistry, Vol. 5, Issue 4, p. 263-275
  • DOI: 10.1038/nchem.1589

Quantum spin Hall effect in two-dimensional transition metal dichalcogenides
journal, November 2014


Phase patterning for ohmic homojunction contact in MoTe2
journal, August 2015


Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers
journal, July 2014

  • Duerloo, Karel-Alexander N.; Li, Yao; Reed, Evan J.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5214

Phase-engineered low-resistance contacts for ultrathin MoS2 transistors
journal, August 2014

  • Kappera, Rajesh; Voiry, Damien; Yalcin, Sibel Ebru
  • Nature Materials, Vol. 13, Issue 12, p. 1128-1134
  • DOI: 10.1038/nmat4080

Two-dimensional atomic crystals
journal, July 2005

  • Novoselov, K. S.; Jiang, D.; Schedin, F.
  • Proceedings of the National Academy of Sciences, Vol. 102, Issue 30, p. 10451-10453
  • DOI: 10.1073/pnas.0502848102

Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials
journal, February 2011


Seeded growth of highly crystalline molybdenum disulphide monolayers at controlled locations
journal, January 2015

  • Han, Gang Hee; Kybert, Nicholas J.; Naylor, Carl H.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7128

Scalable Production of Molybdenum Disulfide Based Biosensors
journal, May 2016


Monolayer Single-Crystal 1T′-MoTe 2 Grown by Chemical Vapor Deposition Exhibits Weak Antilocalization Effect
journal, June 2016


High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity
journal, April 2015


Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform
journal, April 2015

  • Cui, Xu; Lee, Gwan-Hyoung; Kim, Young Duck
  • Nature Nanotechnology, Vol. 10, Issue 6
  • DOI: 10.1038/nnano.2015.70

Atomically Thin MoS2 A New Direct-Gap Semiconductor
journal, September 2010


Anomalous Lattice Vibrations of Single- and Few-Layer MoS 2
journal, March 2010

  • Lee, Changgu; Yan, Hugen; Brus, Louis E.
  • ACS Nano, Vol. 4, Issue 5
  • DOI: 10.1021/nn1003937

Monolayer WS 2 Nanopores for DNA Translocation with Light-Adjustable Sizes
journal, February 2017


Growth and Optical Properties of High-Quality Monolayer WS 2 on Graphite
journal, February 2015


Thickness-dependent bandgap tunable molybdenum disulfide films for optoelectronics
journal, January 2016

  • Zhu, Juntong; Wu, Jiang; Sun, Yinghui
  • RSC Advances, Vol. 6, Issue 112
  • DOI: 10.1039/C6RA22496B

Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2
journal, April 2014

  • Lin, Yung-Chang; Dumcenco, Dumitru O.; Huang, Ying-Sheng
  • Nature Nanotechnology, Vol. 9, Issue 5
  • DOI: 10.1038/nnano.2014.64

Type-II Weyl semimetals
journal, November 2015

  • Soluyanov, Alexey A.; Gresch, Dominik; Wang, Zhijun
  • Nature, Vol. 527, Issue 7579
  • DOI: 10.1038/nature15768

Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride
journal, July 2015

  • Pan, Xing-Chen; Chen, Xuliang; Liu, Huimei
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8805

Large, non-saturating magnetoresistance in WTe2
journal, September 2014

  • Ali, Mazhar N.; Xiong, Jun; Flynn, Steven
  • Nature, Vol. 514, Issue 7521
  • DOI: 10.1038/nature13763

Large-area synthesis of high-quality monolayer 1T’-WTe 2 flakes
journal, February 2017


Absorption dichroism of monolayer 1T′-MoTe 2 in visible range
journal, September 2016


Large-Area and High-Quality 2D Transition Metal Telluride
journal, November 2016


Intrinsic Phonon Bands in High-Quality Monolayer T ′ Molybdenum Ditelluride
journal, December 2016


Anomalous Raman scattering and lattice dynamics in mono- and few-layer WTe 2
journal, January 2016

  • Kim, Younghee; Jhon, Young In; Park, June
  • Nanoscale, Vol. 8, Issue 4
  • DOI: 10.1039/C5NR06098B

Enhanced first-order Raman scattering from arrays of vertical silicon nanowires
journal, June 2012


Phase stability and Raman vibration of the molybdenum ditelluride (MoTe 2 ) monolayer
journal, January 2015

  • Kan, Min; Nam, Hong Gi; Lee, Young Hee
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 22
  • DOI: 10.1039/C5CP01649E

Bandgap opening in few-layered monoclinic MoTe2
journal, May 2015

  • Keum, Dong Hoon; Cho, Suyeon; Kim, Jung Ho
  • Nature Physics, Vol. 11, Issue 6
  • DOI: 10.1038/nphys3314

From Bulk to Monolayer MoS2: Evolution of Raman Scattering
journal, January 2012

  • Li, Hong; Zhang, Qing; Yap, Chin Chong Ray
  • Advanced Functional Materials, Vol. 22, Issue 7
  • DOI: 10.1002/adfm.201102111

Monolayer semiconducting transition metal dichalcogenide alloys: Stability and band bowing
journal, April 2013

  • Kang, Jun; Tongay, Sefaattin; Li, Jingbo
  • Journal of Applied Physics, Vol. 113, Issue 14, Article No. 143703
  • DOI: 10.1063/1.4799126

MoS 2 edges and heterophase interfaces: energy, structure and phase engineering
journal, April 2017


Dynamic Phase Engineering of Bendable Transition Metal Dichalcogenide Monolayers
journal, March 2017


Diffusion-Mediated Synthesis of MoS 2 /WS 2 Lateral Heterostructures
journal, August 2016


Vertical and in-plane heterostructures from WS2/MoS2 monolayers
journal, September 2014

  • Gong, Yongji; Lin, Junhao; Wang, Xingli
  • Nature Materials, Vol. 13, Issue 12, p. 1135-1142
  • DOI: 10.1038/nmat4091

Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors
journal, August 2014

  • Huang, Chunming; Wu, Sanfeng; Sanchez, Ana M.
  • Nature Materials, Vol. 13, Issue 12, p. 1096-1101
  • DOI: 10.1038/nmat4064

Role of the Seeding Promoter in MoS 2 Growth by Chemical Vapor Deposition
journal, January 2014

  • Ling, Xi; Lee, Yi-Hsien; Lin, Yuxuan
  • Nano Letters, Vol. 14, Issue 2
  • DOI: 10.1021/nl4033704

Angle-resolved environmental X-ray photoelectron spectroscopy: A new laboratory setup for photoemission studies at pressures up to 0.4 Torr
journal, September 2012

  • Mangolini, F.; Åhlund, J.; Wabiszewski, G. E.
  • Review of Scientific Instruments, Vol. 83, Issue 9
  • DOI: 10.1063/1.4754127

High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold
journal, June 1972


Changes in structure and chemical composition of α-MoTe 2 and β-MoTe 2 during heating in vacuum conditions
journal, August 2015


MoS2—an integrated protective and active layer on n+p-Si for solar H2 evolution
journal, January 2013

  • Laursen, Anders B.; Pedersen, Thomas; Malacrida, Paolo
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 46
  • DOI: 10.1039/c3cp52890a

Control of Radiation Damage in MoS 2 by Graphene Encapsulation
journal, October 2013

  • Zan, Recep; Ramasse, Quentin M.; Jalil, Rashid
  • ACS Nano, Vol. 7, Issue 11
  • DOI: 10.1021/nn4044035

Works referencing / citing this record:

Novel structured transition metal dichalcogenide nanosheets
journal, January 2018

  • Zhang, Xiao; Lai, Zhuangchai; Ma, Qinglang
  • Chemical Society Reviews, Vol. 47, Issue 9
  • DOI: 10.1039/c8cs00094h

2D Layered Material-Based van der Waals Heterostructures for Optoelectronics
journal, January 2018

  • Zhou, Xing; Hu, Xiaozong; Yu, Jing
  • Advanced Functional Materials, Vol. 28, Issue 14
  • DOI: 10.1002/adfm.201706587

Recent Developments in Controlled Vapor‐Phase Growth of 2D Group 6 Transition Metal Dichalcogenides
journal, December 2018

  • Kim, Se‐Yang; Kwak, Jinsung; Ciobanu, Cristian V.
  • Advanced Materials, Vol. 31, Issue 20
  • DOI: 10.1002/adma.201804939

The MoSeS dynamic omnigami paradigm for smart shape and composition programmable 2D materials
journal, November 2019


Strategies on Phase Control in Transition Metal Dichalcogenides
journal, August 2018

  • Wang, Renyan; Yu, Yiwei; Zhou, Shasha
  • Advanced Functional Materials, Vol. 28, Issue 47
  • DOI: 10.1002/adfm.201802473

Recent advances in the preparation, characterization, and applications of two-dimensional heterostructures for energy storage and conversion
journal, January 2018

  • Das, Pratteek; Fu, Qiang; Bao, Xinhe
  • Journal of Materials Chemistry A, Vol. 6, Issue 44
  • DOI: 10.1039/c8ta04618b

Higher-Order Topology, Monopole Nodal Lines, and the Origin of Large Fermi Arcs in Transition Metal Dichalcogenides X Te 2 ( X = Mo , W )
journal, October 2019


The MoSeS dynamic omnigami paradigm for smart shape and composition programmable 2D materials
journal, November 2019