DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The National Direct-Drive Inertial Confinement Fusion Program

Abstract

The National Direct-Drive Inertial Confinement Fusion Program consists of the 100-Gbar Campaign on the 30-kJ, 351-nm, 60-beam OMEGA Laser System and the Megajoule Direct-Drive (MJDD) Campaign on the 1.8-MJ, 351-nm, 192-beam National Ignition Facility (NIF). The main goals of the 100-Gbar Campaign are to demonstrate and understand the physics for hot-spot conditions and formation relevant for ignition at the MJ scale, while the MJDD Campaign seeks to understand the laser-plasma interactions, energy coupling, and laser imprint for ignition-scale direct-drive coronal plasmas. An overview of the multi-year, systematic effort that is underway for the National Direct-Drive Inertial Confinement Fusion Program (including laser, target, and diagnostic improvements in progress), as well as recent results from the 100-Gbar Campaign on OMEGA and the MJDD Campaign on NIF is presented in this paper.

Authors:
 [1];  [1];  [1];  [1];  [1];  [2];  [1];  [3];  [4];  [1];  [1];  [1];  [1];  [5];  [1];  [4];  [1];  [1];  [1];  [1] more »;  [1];  [1];  [5];  [1];  [1]; ORCiD logo [6];  [1];  [6];  [5];  [5];  [4];  [1];  [1];  [5];  [1];  [4];  [1];  [5];  [3];  [1];  [1];  [1];  [2];  [1];  [1];  [1];  [1];  [5];  [1];  [1];  [1];  [5];  [1];  [1];  [1];  [4];  [4];  [1];  [4];  [1];  [2];  [1];  [1];  [6];  [1];  [1];  [4];  [1];  [1];  [2];  [7];  [5];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [4];  [1];  [5];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [4];  [1] « less
  1. Univ. of Rochester, NY (United States). Lab. for Laser Energetics
  2. Naval Research Lab. (NRL), Washington, DC (United States). Plasma Physics Division
  3. Schafer Corporation, Livermore, CA (United States)
  4. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  5. General Atomics, San Diego, CA (United States)
  6. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Plasma Science and Fusion Center
  7. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States); Univ. of Rochester, NY (United States). Lab. for Laser Energetics
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1835040
Alternate Identifier(s):
OSTI ID: 1487239
Report Number(s):
LLNL-JRNL-822100; 2017-53; 1-456
Journal ID: ISSN 0029-5515; 1033688; TRN: US2300199
Grant/Contract Number:  
AC52-07NA27344; NA0001944
Resource Type:
Accepted Manuscript
Journal Name:
Nuclear Fusion
Additional Journal Information:
Journal Volume: 59; Journal Issue: 3; Journal ID: ISSN 0029-5515
Publisher:
IOP Science
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; laser direct drive inertial confinement fusion; hydrodynamic instability; laser plasma interaction; high power lasers

Citation Formats

Regan, S. P., Goncharov, V. N., Sangster, T. C., Campbell, E. M., Betti, R., Bates, J. W., Bauer, K., Bernat, T., Bhandarkar, S., Boehly, T. R., Bonino, M. J., Bose, A., Cao, D., Carlson, L., Chapman, R., Chapman, T., Collins, G. W., Collins, T. J.B., Craxton, R. S., Delettrez, J. A., Edgell, D. H., Epstein, R., Farrell, M., Forrest, C. J., Follett, R. K., Frenje, J. A., Froula, D. H., Gatu Johnson, M., Gibson, C. R., Gonzalez, L., Goyon, C., Glebov, V. Yu, Gopalaswamy, V., Greenwood, A., Harding, D. R., Hohenberger, M., Hu, S. X., Huang, H., Hund, J., Igumenshchev, I. V., Jacobs-Perkins, D. W., Janezic, R. T., Karasik, M., Kelly, J. H., Kessler, T. J., Knauer, J. P., Kosc, T. Z., Luo, R., Loucks, S. J., Marozas, J. A., Marshall, F. J., Mauldin, M., McCrory, R. L., Mckenty, P. W., Michel, D. T., Michel, P., Moody, J. D., Myatt, J. F., Nikroo, A., Nilson, P. M., Obenschain, S. P., Palastro, J. P., Peebles, J., Petrasso, R. D., Petta, N., Radha, P. B., Ralph, J. E., Rosenberg, M. J., Sampat, S., Schmitt, A. J., Schmitt, M. J., Schoff, M., Seka, W., Shah, R., Rygg, J. R., Shaw, J. G., Short, R., Shmayda, W. T., Shoup, M. J., Shvydky, A., Solodov, A. A., Sorce, C., Stadermann, M., Stoeckl, C., Sweet, W., Taylor, C., Taylor, R., Theobald, W., Turnbull, D. P., Ulreich, J., Wittman, M. D., Woo, K. M., Youngblood, K., and Zuegel, J. D. The National Direct-Drive Inertial Confinement Fusion Program. United States: N. p., 2018. Web. doi:10.1088/1741-4326/aae9b5.
Regan, S. P., Goncharov, V. N., Sangster, T. C., Campbell, E. M., Betti, R., Bates, J. W., Bauer, K., Bernat, T., Bhandarkar, S., Boehly, T. R., Bonino, M. J., Bose, A., Cao, D., Carlson, L., Chapman, R., Chapman, T., Collins, G. W., Collins, T. J.B., Craxton, R. S., Delettrez, J. A., Edgell, D. H., Epstein, R., Farrell, M., Forrest, C. J., Follett, R. K., Frenje, J. A., Froula, D. H., Gatu Johnson, M., Gibson, C. R., Gonzalez, L., Goyon, C., Glebov, V. Yu, Gopalaswamy, V., Greenwood, A., Harding, D. R., Hohenberger, M., Hu, S. X., Huang, H., Hund, J., Igumenshchev, I. V., Jacobs-Perkins, D. W., Janezic, R. T., Karasik, M., Kelly, J. H., Kessler, T. J., Knauer, J. P., Kosc, T. Z., Luo, R., Loucks, S. J., Marozas, J. A., Marshall, F. J., Mauldin, M., McCrory, R. L., Mckenty, P. W., Michel, D. T., Michel, P., Moody, J. D., Myatt, J. F., Nikroo, A., Nilson, P. M., Obenschain, S. P., Palastro, J. P., Peebles, J., Petrasso, R. D., Petta, N., Radha, P. B., Ralph, J. E., Rosenberg, M. J., Sampat, S., Schmitt, A. J., Schmitt, M. J., Schoff, M., Seka, W., Shah, R., Rygg, J. R., Shaw, J. G., Short, R., Shmayda, W. T., Shoup, M. J., Shvydky, A., Solodov, A. A., Sorce, C., Stadermann, M., Stoeckl, C., Sweet, W., Taylor, C., Taylor, R., Theobald, W., Turnbull, D. P., Ulreich, J., Wittman, M. D., Woo, K. M., Youngblood, K., & Zuegel, J. D. The National Direct-Drive Inertial Confinement Fusion Program. United States. https://doi.org/10.1088/1741-4326/aae9b5
Regan, S. P., Goncharov, V. N., Sangster, T. C., Campbell, E. M., Betti, R., Bates, J. W., Bauer, K., Bernat, T., Bhandarkar, S., Boehly, T. R., Bonino, M. J., Bose, A., Cao, D., Carlson, L., Chapman, R., Chapman, T., Collins, G. W., Collins, T. J.B., Craxton, R. S., Delettrez, J. A., Edgell, D. H., Epstein, R., Farrell, M., Forrest, C. J., Follett, R. K., Frenje, J. A., Froula, D. H., Gatu Johnson, M., Gibson, C. R., Gonzalez, L., Goyon, C., Glebov, V. Yu, Gopalaswamy, V., Greenwood, A., Harding, D. R., Hohenberger, M., Hu, S. X., Huang, H., Hund, J., Igumenshchev, I. V., Jacobs-Perkins, D. W., Janezic, R. T., Karasik, M., Kelly, J. H., Kessler, T. J., Knauer, J. P., Kosc, T. Z., Luo, R., Loucks, S. J., Marozas, J. A., Marshall, F. J., Mauldin, M., McCrory, R. L., Mckenty, P. W., Michel, D. T., Michel, P., Moody, J. D., Myatt, J. F., Nikroo, A., Nilson, P. M., Obenschain, S. P., Palastro, J. P., Peebles, J., Petrasso, R. D., Petta, N., Radha, P. B., Ralph, J. E., Rosenberg, M. J., Sampat, S., Schmitt, A. J., Schmitt, M. J., Schoff, M., Seka, W., Shah, R., Rygg, J. R., Shaw, J. G., Short, R., Shmayda, W. T., Shoup, M. J., Shvydky, A., Solodov, A. A., Sorce, C., Stadermann, M., Stoeckl, C., Sweet, W., Taylor, C., Taylor, R., Theobald, W., Turnbull, D. P., Ulreich, J., Wittman, M. D., Woo, K. M., Youngblood, K., and Zuegel, J. D. Tue . "The National Direct-Drive Inertial Confinement Fusion Program". United States. https://doi.org/10.1088/1741-4326/aae9b5. https://www.osti.gov/servlets/purl/1835040.
@article{osti_1835040,
title = {The National Direct-Drive Inertial Confinement Fusion Program},
author = {Regan, S. P. and Goncharov, V. N. and Sangster, T. C. and Campbell, E. M. and Betti, R. and Bates, J. W. and Bauer, K. and Bernat, T. and Bhandarkar, S. and Boehly, T. R. and Bonino, M. J. and Bose, A. and Cao, D. and Carlson, L. and Chapman, R. and Chapman, T. and Collins, G. W. and Collins, T. J.B. and Craxton, R. S. and Delettrez, J. A. and Edgell, D. H. and Epstein, R. and Farrell, M. and Forrest, C. J. and Follett, R. K. and Frenje, J. A. and Froula, D. H. and Gatu Johnson, M. and Gibson, C. R. and Gonzalez, L. and Goyon, C. and Glebov, V. Yu and Gopalaswamy, V. and Greenwood, A. and Harding, D. R. and Hohenberger, M. and Hu, S. X. and Huang, H. and Hund, J. and Igumenshchev, I. V. and Jacobs-Perkins, D. W. and Janezic, R. T. and Karasik, M. and Kelly, J. H. and Kessler, T. J. and Knauer, J. P. and Kosc, T. Z. and Luo, R. and Loucks, S. J. and Marozas, J. A. and Marshall, F. J. and Mauldin, M. and McCrory, R. L. and Mckenty, P. W. and Michel, D. T. and Michel, P. and Moody, J. D. and Myatt, J. F. and Nikroo, A. and Nilson, P. M. and Obenschain, S. P. and Palastro, J. P. and Peebles, J. and Petrasso, R. D. and Petta, N. and Radha, P. B. and Ralph, J. E. and Rosenberg, M. J. and Sampat, S. and Schmitt, A. J. and Schmitt, M. J. and Schoff, M. and Seka, W. and Shah, R. and Rygg, J. R. and Shaw, J. G. and Short, R. and Shmayda, W. T. and Shoup, M. J. and Shvydky, A. and Solodov, A. A. and Sorce, C. and Stadermann, M. and Stoeckl, C. and Sweet, W. and Taylor, C. and Taylor, R. and Theobald, W. and Turnbull, D. P. and Ulreich, J. and Wittman, M. D. and Woo, K. M. and Youngblood, K. and Zuegel, J. D.},
abstractNote = {The National Direct-Drive Inertial Confinement Fusion Program consists of the 100-Gbar Campaign on the 30-kJ, 351-nm, 60-beam OMEGA Laser System and the Megajoule Direct-Drive (MJDD) Campaign on the 1.8-MJ, 351-nm, 192-beam National Ignition Facility (NIF). The main goals of the 100-Gbar Campaign are to demonstrate and understand the physics for hot-spot conditions and formation relevant for ignition at the MJ scale, while the MJDD Campaign seeks to understand the laser-plasma interactions, energy coupling, and laser imprint for ignition-scale direct-drive coronal plasmas. An overview of the multi-year, systematic effort that is underway for the National Direct-Drive Inertial Confinement Fusion Program (including laser, target, and diagnostic improvements in progress), as well as recent results from the 100-Gbar Campaign on OMEGA and the MJDD Campaign on NIF is presented in this paper.},
doi = {10.1088/1741-4326/aae9b5},
journal = {Nuclear Fusion},
number = 3,
volume = 59,
place = {United States},
year = {Tue Dec 18 00:00:00 EST 2018},
month = {Tue Dec 18 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 10 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Subpercent-Scale Control of 3D Low Modes of Targets Imploded in Direct-Drive Configuration on OMEGA
journal, March 2018


Monochromatic backlighting of direct-drive cryogenic DT implosions on OMEGA
journal, May 2017

  • Stoeckl, C.; Epstein, R.; Betti, R.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4977918

Fuel gain exceeding unity in an inertially confined fusion implosion
journal, February 2014

  • Hurricane, O. A.; Callahan, D. A.; Casey, D. T.
  • Nature, Vol. 506, Issue 7488
  • DOI: 10.1038/nature13008

High-precision measurements of the equation of state of hydrocarbons at 1–10 Mbar using laser-driven shock waves
journal, May 2010

  • Barrios, M. A.; Hicks, D. G.; Boehly, T. R.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3358144

Suppressing Two-Plasmon Decay with Laser Frequency Detuning
journal, March 2018


Laser-direct-drive program: Promise, challenge, and path forward
journal, March 2017

  • Campbell, E. M.; Goncharov, V. N.; Sangster, T. C.
  • Matter and Radiation at Extremes, Vol. 2, Issue 2
  • DOI: 10.1016/j.mre.2017.03.001

Optical properties of highly compressed polystyrene: An ab initio study
journal, October 2017


Calibration of a neutron time-of-flight detector with a rapid instrument response function for measurements of bulk fluid motion on OMEGA
journal, October 2018

  • Mannion, O. M.; Glebov, V. Yu.; Forrest, C. J.
  • Review of Scientific Instruments, Vol. 89, Issue 10
  • DOI: 10.1063/1.5037324

Initial performance results of the OMEGA laser system
journal, January 1997


Properties of fluid deuterium under double-shock compression to several Mbar
journal, September 2004

  • Boehly, T. R.; Hicks, D. G.; Celliers, P. M.
  • Physics of Plasmas, Vol. 11, Issue 9
  • DOI: 10.1063/1.1778164

Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium–tritium implosions on OMEGA
journal, May 2014

  • Goncharov, V. N.; Sangster, T. C.; Betti, R.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4876618

Increasing Hydrodynamic Efficiency by Reducing Cross-Beam Energy Transfer in Direct-Drive-Implosion Experiments
journal, March 2012


Hot-spot mix in ignition-scale implosions on the NIF
journal, May 2012

  • Regan, S. P.; Epstein, R.; Hammel, B. A.
  • Physics of Plasmas, Vol. 19, Issue 5
  • DOI: 10.1063/1.3694057

Alpha Heating and Burning Plasmas in Inertial Confinement Fusion
journal, June 2015


First-principles investigations on ionization and thermal conductivity of polystyrene for inertial confinement fusion applications
journal, April 2016

  • Hu, S. X.; Collins, L. A.; Goncharov, V. N.
  • Physics of Plasmas, Vol. 23, Issue 4
  • DOI: 10.1063/1.4945753

Requirements and Capabilities for Fielding Cryogenic DT-Containing Fill-Tube Targets for Direct-Drive Experiments on OMEGA
journal, December 2017


First-principles equation of state of polystyrene and its effect on inertial confinement fusion implosions
journal, October 2015


A wave-based model for cross-beam energy transfer in direct-drive inertial confinement fusion
journal, May 2017

  • Myatt, J. F.; Follett, R. K.; Shaw, J. G.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4982059

National direct-drive program on OMEGA and the National Ignition Facility
journal, October 2016


First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion applications
journal, April 2014


Demonstration of Fuel Hot-Spot Pressure in Excess of 50 Gbar for Direct-Drive, Layered Deuterium-Tritium Implosions on OMEGA
journal, July 2016


Three-dimensional modeling of direct-drive cryogenic implosions on OMEGA
journal, May 2016

  • Igumenshchev, I. V.; Goncharov, V. N.; Marshall, F. J.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4948418

The National Ignition Facility - applications for inertial fusion energy and high-energy-density science
journal, December 1999


The National Direct-Drive Program: OMEGA to the National Ignition Facility
journal, December 2017


First-principles opacity table of warm dense deuterium for inertial-confinement-fusion applications
journal, September 2014


Hot-Spot Mix in Ignition-Scale Inertial Confinement Fusion Targets
journal, July 2013


Polar direct drive on the National Ignition Facility
journal, May 2004

  • Skupsky, S.; Marozas, J. A.; Craxton, R. S.
  • Physics of Plasmas, Vol. 11, Issue 5, p. 2763-2770
  • DOI: 10.1063/1.1689665

Effects of local defect growth in direct-drive cryogenic implosions on OMEGA
journal, August 2013

  • Igumenshchev, I. V.; Goncharov, V. N.; Shmayda, W. T.
  • Physics of Plasmas, Vol. 20, Issue 8
  • DOI: 10.1063/1.4818280

Precision equation-of-state measurements on National Ignition Facility ablator materials from 1 to 12 Mbar using laser-driven shock waves
journal, May 2012

  • Barrios, M. A.; Boehly, T. R.; Hicks, D. G.
  • Journal of Applied Physics, Vol. 111, Issue 9
  • DOI: 10.1063/1.4712050

Testing a Cherenkov neutron time-of-flight detector on OMEGA
journal, October 2018

  • Glebov, V. Yu.; Eckart, M. J.; Forrest, C. J.
  • Review of Scientific Instruments, Vol. 89, Issue 10
  • DOI: 10.1063/1.5035289

Fusion Energy Output Greater than the Kinetic Energy of an Imploding Shell at the National Ignition Facility
journal, June 2018


Crossed-beam energy transfer in direct-drive implosions
journal, May 2012

  • Igumenshchev, I. V.; Seka, W.; Edgell, D. H.
  • Physics of Plasmas, Vol. 19, Issue 5, Article No. 056314
  • DOI: 10.1063/1.4718594

Polar-direct-drive experiments on the National Ignition Facilitya)
journal, May 2015

  • Hohenberger, M.; Radha, P. B.; Myatt, J. F.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4920958

Effects of thin high-Z layers on the hydrodynamics of laser-accelerated plastic targets
journal, May 2002

  • Obenschain, S. P.; Colombant, D. G.; Karasik, M.
  • Physics of Plasmas, Vol. 9, Issue 5
  • DOI: 10.1063/1.1464541

Core conditions for alpha heating attained in direct-drive inertial confinement fusion
journal, July 2016


Mitigating laser-imprint effects in direct-drive inertial confinement fusion implosions with an above-critical-density foam layer
journal, August 2018

  • Hu, S. X.; Theobald, W.; Radha, P. B.
  • Physics of Plasmas, Vol. 25, Issue 8
  • DOI: 10.1063/1.5044609

The quest for laboratory inertial fusion burn in the United States
journal, May 2016


Direct drive: Simulations and results from the National Ignition Facility
journal, April 2016

  • Radha, P. B.; Hohenberger, M.; Edgell, D. H.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4946023

Diagnosing and controlling mix in National Ignition Facility implosion experiments
journal, May 2011

  • Hammel, B. A.; Scott, H. A.; Regan, S. P.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3567520

Strong Coupling and Degeneracy Effects in Inertial Confinement Fusion Implosions
journal, June 2010


Multiple spherically converging shock waves in liquid deuterium
journal, September 2011

  • Boehly, T. R.; Goncharov, V. N.; Seka, W.
  • Physics of Plasmas, Vol. 18, Issue 9
  • DOI: 10.1063/1.3640805

Direct-drive inertial confinement fusion: A review
journal, November 2015

  • Craxton, R. S.; Anderson, K. S.; Boehly, T. R.
  • Physics of Plasmas, Vol. 22, Issue 11
  • DOI: 10.1063/1.4934714

Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility
journal, July 2015


Producing Cryogenic Deuterium Targets for Experiments on OMEGA
journal, November 2005

  • Harding, D. R.; Sangster, T. C.; Meyerhofer, D. D.
  • Fusion Science and Technology, Vol. 48, Issue 3
  • DOI: 10.13182/FST05-A1079

Two-Plasmon Decay Mitigation in Direct-Drive Inertial-Confinement-Fusion Experiments Using Multilayer Targets
journal, April 2016


Three-dimensional hydrodynamic simulations of OMEGA implosions
journal, May 2017

  • Igumenshchev, I. V.; Michel, D. T.; Shah, R. C.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4979195

First-principles equation-of-state table of deuterium for inertial confinement fusion applications
journal, December 2011


First Measurements of Deuterium-Tritium and Deuterium-Deuterium Fusion Reaction Yields in Ignition-Scalable Direct-Drive Implosions
journal, March 2017


Mitigation of cross-beam energy transfer in ignition-scale polar-direct-drive target designs for the National Ignition Facility
journal, July 2018

  • Collins, T. J. B.; Marozas, J. A.
  • Physics of Plasmas, Vol. 25, Issue 7
  • DOI: 10.1063/1.5039513

The single-line-of-sight, time-resolved x-ray imager diagnostic on OMEGA
journal, October 2018

  • Theobald, W.; Sorce, C.; Bedzyk, M.
  • Review of Scientific Instruments, Vol. 89, Issue 10
  • DOI: 10.1063/1.5036767

Demonstrating ignition hydrodynamic equivalence in direct-drive cryogenic implosions on OMEGA
journal, May 2016


Crossed-beam energy transfer in implosion experiments on OMEGA
journal, December 2010

  • Igumenshchev, I. V.; Edgell, D. H.; Goncharov, V. N.
  • Physics of Plasmas, Vol. 17, Issue 12
  • DOI: 10.1063/1.3532817

Microphysics studies for direct-drive inertial confinement fusion
journal, December 2018


Multibeam Effects on Fast-Electron Generation from Two-Plasmon-Decay Instability
journal, June 2003


Works referencing / citing this record:

Inferred UV fluence focal-spot profiles from soft x-ray pinhole-camera measurements on OMEGA
journal, February 2020

  • Theobald, W.; Sorce, C.; Donaldson, W. R.
  • Review of Scientific Instruments, Vol. 91, Issue 2
  • DOI: 10.1063/1.5120708