DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enhancement of Proton Conductivity in Nonporous Metal–Organic Frameworks: The Role of Framework Proton Density and Humidity

Abstract

Owing to their inherent pore structure, porous metal–organic frameworks (MOFs) can undergo postsynthetic modification, such as loading extra-framework proton carriers. However, strategies for improving the proton conductivity for nonporous MOFs are largely lacking, although increasing numbers of nonporous MOFs exhibit promising proton conductivities. Often, high humidity is required for nonporous MOFs to achieve high conductivities, but to date no clear mechanisms have been experimentally identified. Here we describe the new materials MFM-550(M), [M(HL1)], (H4L1 = biphenyl-4,4'-diphosphonic acid; M = La, Ce, Nd, Sm, Gd, Ho), MFM-550(Ba), [Ba(H2L1)], and MFM-555(M), [M(HL2)], (H4L2 = benzene-1,4-diphosphonic acid; M = La, Ce, Nd, Sm, Gd, Ho), and report enhanced proton conductivities in these nonporous materials by (i) replacing the metal ion to one with a lower oxidation state, (ii) reducing the length of the organic ligand, and (iii) introducing additional acidic protons on the MOF surface. Increased framework proton density in these materials can lead to an enhancement in proton conductivity of up to 4 orders of magnitude. Additionally, we report a comprehensive investigation using in situ 2H NMR and neutron spectroscopy, coupled with molecular dynamic modeling, to elucidate the role of humidity in assembling interconnected networks for proton hopping. This study constructs amore » relationship between framework proton density and the corresponding proton conductivity in nonporous MOFs, and directly explains the role of both surface protons and external water in assembling the proton conduction pathways.« less

Authors:
 [1];  [1];  [2];  [1];  [3];  [4];  [1]; ORCiD logo [3];  [3];  [5];  [6];  [6];  [4]; ORCiD logo [4];  [7]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [1]
  1. Univ. of Manchester (United Kingdom)
  2. Novosibirsk State Univ. (Russian Federation); Russian Academy of Sciences (RAS), Novosibirsk (Russian Federation)
  3. Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab., ISIS Neutron Source
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  5. Univ. of Nottingham (United Kingdom)
  6. School of Chemistry, University of Nottingham, Nottingham NG7 2RD, U.K.
  7. Science and Technology Facilities Council (STFC), Harwell Campus, Oxford (United Kingdom). Diamond Light Source, Ltd.
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1486933
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 30; Journal Issue: 21; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Pili, Simona, Rought, Peter, Kolokolov, Daniil I., Lin, Longfei, da Silva, Ivan, Cheng, Yongqiang, Marsh, Christopher, Silverwood, Ian P., García Sakai, Victoria, Li, Ming, Titman, Jeremy J., Knight, Lyndsey, Daemen, Luke L., Ramirez-Cuesta, Anibal J., Tang, Chiu C., Stepanov, Alexander G., Yang, Sihai, and Schröder, Martin. Enhancement of Proton Conductivity in Nonporous Metal–Organic Frameworks: The Role of Framework Proton Density and Humidity. United States: N. p., 2018. Web. doi:10.1021/acs.chemmater.8b02765.
Pili, Simona, Rought, Peter, Kolokolov, Daniil I., Lin, Longfei, da Silva, Ivan, Cheng, Yongqiang, Marsh, Christopher, Silverwood, Ian P., García Sakai, Victoria, Li, Ming, Titman, Jeremy J., Knight, Lyndsey, Daemen, Luke L., Ramirez-Cuesta, Anibal J., Tang, Chiu C., Stepanov, Alexander G., Yang, Sihai, & Schröder, Martin. Enhancement of Proton Conductivity in Nonporous Metal–Organic Frameworks: The Role of Framework Proton Density and Humidity. United States. https://doi.org/10.1021/acs.chemmater.8b02765
Pili, Simona, Rought, Peter, Kolokolov, Daniil I., Lin, Longfei, da Silva, Ivan, Cheng, Yongqiang, Marsh, Christopher, Silverwood, Ian P., García Sakai, Victoria, Li, Ming, Titman, Jeremy J., Knight, Lyndsey, Daemen, Luke L., Ramirez-Cuesta, Anibal J., Tang, Chiu C., Stepanov, Alexander G., Yang, Sihai, and Schröder, Martin. Mon . "Enhancement of Proton Conductivity in Nonporous Metal–Organic Frameworks: The Role of Framework Proton Density and Humidity". United States. https://doi.org/10.1021/acs.chemmater.8b02765. https://www.osti.gov/servlets/purl/1486933.
@article{osti_1486933,
title = {Enhancement of Proton Conductivity in Nonporous Metal–Organic Frameworks: The Role of Framework Proton Density and Humidity},
author = {Pili, Simona and Rought, Peter and Kolokolov, Daniil I. and Lin, Longfei and da Silva, Ivan and Cheng, Yongqiang and Marsh, Christopher and Silverwood, Ian P. and García Sakai, Victoria and Li, Ming and Titman, Jeremy J. and Knight, Lyndsey and Daemen, Luke L. and Ramirez-Cuesta, Anibal J. and Tang, Chiu C. and Stepanov, Alexander G. and Yang, Sihai and Schröder, Martin},
abstractNote = {Owing to their inherent pore structure, porous metal–organic frameworks (MOFs) can undergo postsynthetic modification, such as loading extra-framework proton carriers. However, strategies for improving the proton conductivity for nonporous MOFs are largely lacking, although increasing numbers of nonporous MOFs exhibit promising proton conductivities. Often, high humidity is required for nonporous MOFs to achieve high conductivities, but to date no clear mechanisms have been experimentally identified. Here we describe the new materials MFM-550(M), [M(HL1)], (H4L1 = biphenyl-4,4'-diphosphonic acid; M = La, Ce, Nd, Sm, Gd, Ho), MFM-550(Ba), [Ba(H2L1)], and MFM-555(M), [M(HL2)], (H4L2 = benzene-1,4-diphosphonic acid; M = La, Ce, Nd, Sm, Gd, Ho), and report enhanced proton conductivities in these nonporous materials by (i) replacing the metal ion to one with a lower oxidation state, (ii) reducing the length of the organic ligand, and (iii) introducing additional acidic protons on the MOF surface. Increased framework proton density in these materials can lead to an enhancement in proton conductivity of up to 4 orders of magnitude. Additionally, we report a comprehensive investigation using in situ 2H NMR and neutron spectroscopy, coupled with molecular dynamic modeling, to elucidate the role of humidity in assembling interconnected networks for proton hopping. This study constructs a relationship between framework proton density and the corresponding proton conductivity in nonporous MOFs, and directly explains the role of both surface protons and external water in assembling the proton conduction pathways.},
doi = {10.1021/acs.chemmater.8b02765},
journal = {Chemistry of Materials},
number = 21,
volume = 30,
place = {United States},
year = {Mon Sep 24 00:00:00 EDT 2018},
month = {Mon Sep 24 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 45 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Views of structures of MFM-550(M) and MFM-555(M) obtained from high resolution synchrotron PXRD data. Views of the structure of MFM-550 (a) and MFM-555 (b) along the $c$-axis. (c) View of the coordination node of the phosphonate group of the ligand. (d) Perspective view of the coordination environment atmore » Ln(III) centres. (e) View of the extended Ln-phosphonate 2D-sheet along the $b$-axis.« less

Save / Share:

Works referenced in this record:

Rational Designs for Highly Proton-Conductive Metal−Organic Frameworks
journal, July 2009

  • Sadakiyo, Masaaki; Yamada, Teppei; Kitagawa, Hiroshi
  • Journal of the American Chemical Society, Vol. 131, Issue 29
  • DOI: 10.1021/ja9040016

Three orders of magnitude enhancement of proton conductivity of porous coordination polymers by incorporating ion-pairs into a framework
journal, January 2016

  • You, Ya-Wen; Xue, Chen; Tian, Zheng-Fang
  • Dalton Transactions, Vol. 45, Issue 18
  • DOI: 10.1039/C6DT00290K

Sulfonic Group Functionalized Mixed Ligand Coordination Polymers: Synthesis, Characterization, Water Sorption, and Proton Conduction Studies
journal, January 2017


Proton Conductivities in Functionalized UiO-66: Tuned Properties, Thermogravimetry Mass, and Molecular Simulation Analyses
journal, November 2015

  • Yang, Fan; Huang, Hongliang; Wang, Xiayan
  • Crystal Growth & Design, Vol. 15, Issue 12
  • DOI: 10.1021/acs.cgd.5b01190

Wide Control of Proton Conductivity in Porous Coordination Polymers
journal, February 2011

  • Shigematsu, Akihito; Yamada, Teppei; Kitagawa, Hiroshi
  • Journal of the American Chemical Society, Vol. 133, Issue 7
  • DOI: 10.1021/ja109810w

Proton Conductivity Control by Ion Substitution in a Highly Proton-Conductive Metal–Organic Framework
journal, September 2014

  • Sadakiyo, Masaaki; Yamada, Teppei; Kitagawa, Hiroshi
  • Journal of the American Chemical Society, Vol. 136, Issue 38
  • DOI: 10.1021/ja507634v

Ionothermal synthesis and proton-conductive properties of NH 2 -MIL-53 MOF nanomaterials
journal, January 2016

  • Liu, Jia; Zou, Xiaoqin; Liu, Chuanfang
  • CrystEngComm, Vol. 18, Issue 4
  • DOI: 10.1039/C5CE02141C

One-dimensional imidazole aggregate in aluminium porous coordination polymers with high proton conductivity
journal, September 2009

  • Bureekaew, Sareeya; Horike, Satoshi; Higuchi, Masakazu
  • Nature Materials, Vol. 8, Issue 10
  • DOI: 10.1038/nmat2526

Confinement of Mobile Histamine in Coordination Nanochannels for Fast Proton Transfer
journal, October 2011

  • Umeyama, Daiki; Horike, Satoshi; Inukai, Munehiro
  • Angewandte Chemie International Edition, Vol. 50, Issue 49
  • DOI: 10.1002/anie.201102997

Anhydrous proton conduction at 150 °C in a crystalline metal–organic framework
journal, October 2009

  • Hurd, Jeff A.; Vaidhyanathan, Ramanathan; Thangadurai, Venkataraman
  • Nature Chemistry, Vol. 1, Issue 9
  • DOI: 10.1038/nchem.402

pH-Dependent Proton Conducting Behavior in a Metal-Organic Framework Material
journal, July 2014

  • Phang, Won Ju; Lee, Woo Ram; Yoo, Kicheon
  • Angewandte Chemie International Edition, Vol. 53, Issue 32
  • DOI: 10.1002/anie.201404164

The Role of a Three Dimensionally Ordered Defect Sublattice on the Acidity of a Sulfonated Metal–Organic Framework
journal, August 2015

  • Taylor, Jared M.; Komatsu, Tokutaro; Dekura, Shun
  • Journal of the American Chemical Society, Vol. 137, Issue 35
  • DOI: 10.1021/jacs.5b07267

Encapsulating Mobile Proton Carriers into Structural Defects in Coordination Polymer Crystals: High Anhydrous Proton Conduction and Fuel Cell Application
journal, June 2016

  • Inukai, Munehiro; Horike, Satoshi; Itakura, Tomoya
  • Journal of the American Chemical Society, Vol. 138, Issue 27
  • DOI: 10.1021/jacs.6b03625

Tuning Intrinsic and Extrinsic Proton Conduction in Metal–Organic Frameworks by the Lanthanide Contraction
journal, October 2017

  • Wong, Norman E.; Ramaswamy, Padmini; Lee, Andrew S.
  • Journal of the American Chemical Society, Vol. 139, Issue 41
  • DOI: 10.1021/jacs.7b07987

Diffusion of Benzene in the Breathing Metal–Organic Framework MIL-53(Cr): A Joint Experimental–Computational Investigation
journal, April 2015

  • Kolokolov, D. I.; Jobic, H.; Rives, S.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 15
  • DOI: 10.1021/acs.jpcc.5b01465

Uncovering the Rotation and Translational Mobility of Benzene Confined in UiO-66 (Zr) Metal–Organic Framework by the 2 H NMR–QENS Experimental Toolbox
journal, February 2017

  • Kolokolov, Daniil I.; Maryasov, Alexander G.; Ollivier, Jacques
  • The Journal of Physical Chemistry C, Vol. 121, Issue 5
  • DOI: 10.1021/acs.jpcc.6b12001

Diffusion-Controlled Rotation of Triptycene in a Metal–Organic Framework (MOF) Sheds Light on the Viscosity of MOF-Confined Solvent
journal, August 2016


Proton Conduction in a Phosphonate-Based Metal–Organic Framework Mediated by Intrinsic “Free Diffusion inside a Sphere”
journal, May 2016

  • Pili, Simona; Argent, Stephen P.; Morris, Christopher G.
  • Journal of the American Chemical Society, Vol. 138, Issue 20
  • DOI: 10.1021/jacs.6b02194

Proton Transport in a Highly Conductive Porous Zirconium‐Based Metal–Organic Framework: Molecular Insight
journal, February 2016

  • Borges, Daiane Damasceno; Devautour‐Vinot, Sabine; Jobic, Hervé
  • Angewandte Chemie International Edition, Vol. 55, Issue 12
  • DOI: 10.1002/anie.201510855

Facile Proton Conduction via Ordered Water Molecules in a Phosphonate Metal−Organic Framework
journal, October 2010

  • Taylor, Jared M.; Mah, Roger K.; Moudrakovski, Igor L.
  • Journal of the American Chemical Society, Vol. 132, Issue 40
  • DOI: 10.1021/ja107035w

Characterization and Dynamics of the Different Protonic Species in Hydrated 12-Tungstophosphoric Acid Studied by 2 H NMR
journal, December 2014

  • Kolokolov, Daniil I.; Kazantsev, Maxim S.; Luzgin, Mikhail V.
  • The Journal of Physical Chemistry C, Vol. 118, Issue 51
  • DOI: 10.1021/jp510410k

Imparting High Proton Conductivity to a Metal–Organic Framework Material by Controlled Acid Impregnation
journal, September 2012

  • Ponomareva, Valentina G.; Kovalenko, Konstantin A.; Chupakhin, Alexei P.
  • Journal of the American Chemical Society, Vol. 134, Issue 38
  • DOI: 10.1021/ja305587n

High Proton Conduction in a Chiral Ferromagnetic Metal–Organic Quartz-like Framework
journal, October 2011

  • Pardo, Emilio; Train, Cyrille; Gontard, Geoffrey
  • Journal of the American Chemical Society, Vol. 133, Issue 39
  • DOI: 10.1021/ja206917z

Reversible phase transformation in proton conducting Strandberg-type POM based metal organic material
journal, January 2012

  • Dey, Chandan; Kundu, Tanay; Banerjee, Rahul
  • Chem. Commun., Vol. 48, Issue 2
  • DOI: 10.1039/C1CC15162B

Proton-Conductive Magnetic Metal–Organic Frameworks, {NR 3 (CH 2 COOH)}[M a II M b III (ox) 3 ]: Effect of Carboxyl Residue upon Proton Conduction
journal, January 2013

  • O̅kawa, Hisashi; Sadakiyo, Masaaki; Yamada, Teppei
  • Journal of the American Chemical Society, Vol. 135, Issue 6
  • DOI: 10.1021/ja309968u

High Proton Conductivity in a Flexible, Cross-Linked, Ultramicroporous Magnesium Tetraphosphonate Hybrid Framework
journal, April 2012

  • Colodrero, Rosario M. P.; Olivera-Pastor, Pascual; Losilla, Enrique R.
  • Inorganic Chemistry, Vol. 51, Issue 14
  • DOI: 10.1021/ic3007316

Proton Conduction in Metal-Organic Frameworks and Related Modularly Built Porous Solids
journal, January 2013

  • Yoon, Minyoung; Suh, Kyungwon; Natarajan, Srinivasan
  • Angewandte Chemie International Edition, Vol. 52, Issue 10
  • DOI: 10.1002/anie.201206410

Highly proton conductive nanoporous coordination polymers with sulfonic acid groups on the pore surface
journal, January 2014

  • Ramaswamy, Padmini; Matsuda, Ryotaro; Kosaka, Wataru
  • Chem. Commun., Vol. 50, Issue 9
  • DOI: 10.1039/C3CC47980C

Two-in-One: Inherent Anhydrous and Water-Assisted High Proton Conduction in a 3D Metal-Organic Framework
journal, December 2013

  • Nagarkar, Sanjog S.; Unni, Sreekuttan M.; Sharma, Amitosh
  • Angewandte Chemie International Edition, Vol. 53, Issue 10
  • DOI: 10.1002/anie.201309077

Guest Molecule-Responsive Functional Calcium Phosphonate Frameworks for Tuned Proton Conductivity
journal, April 2014

  • Bazaga-García, Montse; Colodrero, Rosario M. P.; Papadaki, Maria
  • Journal of the American Chemical Society, Vol. 136, Issue 15
  • DOI: 10.1021/ja500356z

3D Coordination Polymer of Cd(II) with an Imidazolium-Based Linker Showing Parallel Polycatenation Forming Channels with Aligned Imidazolium Groups
journal, January 2014

  • Sen, Susan; Yamada, Teppei; Kitagawa, Hiroshi
  • Crystal Growth & Design, Vol. 14, Issue 3
  • DOI: 10.1021/cg401760m

Direct 2 H NMR Observation of the Proton Mobility of the Acidic Sites of Anhydrous 12-Tungstophosphoric Acid
journal, April 2013

  • Kolokolov, Daniil I.; Kazantsev, Maxim S.; Luzgin, Mikhail V.
  • ChemPhysChem, Vol. 14, Issue 9
  • DOI: 10.1002/cphc.201300291

Incoherent neutron scattering function for molecular diffusion in lamellar systems
journal, November 1978


Works referencing / citing this record:

Lamellar columnar liquid-crystalline mesophases as a 2D platform for anhydrous proton conduction
journal, January 2019

  • Cuerva, Cristián; Campo, José A.; Cano, Mercedes
  • Journal of Materials Chemistry C, Vol. 7, Issue 33
  • DOI: 10.1039/c9tc03627j

Metal‐Organic Frameworks for Hydrogen Energy Applications: Advances and Challenges
journal, March 2019

  • Bakuru, Vasudeva Rao; DMello, Marilyn Esclance; Kalidindi, Suresh Babu
  • ChemPhysChem, Vol. 20, Issue 10
  • DOI: 10.1002/cphc.201801147

Coordination polymer-based conductive materials: ionic conductivity vs. electronic conductivity
journal, January 2019

  • Wang, Hai-Ning; Meng, Xing; Dong, Long-Zhang
  • Journal of Materials Chemistry A, Vol. 7, Issue 42
  • DOI: 10.1039/c9ta08253k

Strategic hierarchical improvement of superprotonic conductivity in a stable metal–organic framework system
journal, January 2019

  • Li, Xiao-Min; Liu, Jiang; Zhao, Chen
  • Journal of Materials Chemistry A, Vol. 7, Issue 43
  • DOI: 10.1039/c9ta10286h

A Co( ii )-coordination polymer for ultrahigh superprotonic conduction: an atomistic insight through molecular simulations and QENS experiments
journal, January 2020

  • Pal, Shyam Chand; Chand, Santanu; Kumar, Anaparthi Ganesh
  • Journal of Materials Chemistry A, Vol. 8, Issue 16
  • DOI: 10.1039/d0ta00417k

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.