skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Low-Temperature Restructuring of CeO 2-Supported Ru Nanoparticles Determines Selectivity in CO 2 Catalytic Reduction

Abstract

CO 2 reduction to higher value products is a promising way to produce fuels and key chemical building blocks while reducing CO 2 emissions. The reaction at atmospheric pressure mainly yields CH 4 via methanation and CO via the reverse water-gas shift (RWGS) reaction. Describing catalyst features that control the selectivity of these two pathways is important to determine the formation of specific products. At the same time, identification of morphological changes occurring to catalysts under reaction conditions can be crucial to tune their catalytic performance. In this contribution we investigate the dependency of selectivity for CO 2 reduction on the size of Ru nanoparticles (NPs) and on support. We find that even at rather low temperatures (210 °C), oxidative pretreatment induces redispersion of Ru NPs supported on CeO 2 and leads to a complete switch in the performance of this material from a well-known selective methanation catalyst to an active and selective RWGS catalyst. By utilizing in situ X-ray absorption spectroscopy, we demonstrate that the low-temperature redispersion process occurs via decomposition of the metal oxide phase with size-dependent kinetics, producing stable single-site RuO x/CeO 2 species strongly bound to the CeO 2 support that are remarkably selective for COmore » production. Furthermore, these results show that reaction selectivity can be heavily dependent on catalyst structure and that structural changes of the catalyst can occur even at low temperatures and can go unseen in materials with less defined structures.« less

Authors:
 [1];  [2];  [1];  [3];  [3];  [1];  [3]; ORCiD logo [1]
  1. Stanford Univ., Stanford, CA (United States)
  2. Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  3. SLAC National Accelerator Lab., Menlo Park, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1484844
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 140; Journal Issue: 42; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Aitbekova, Aisulu, Wu, Liheng, Wrasman, Cody J., Boubnov, Alexey, Hoffman, Adam S., Goodman, Emmett D., Bare, Simon R., and Cargnello, Matteo. Low-Temperature Restructuring of CeO2-Supported Ru Nanoparticles Determines Selectivity in CO2 Catalytic Reduction. United States: N. p., 2018. Web. doi:10.1021/jacs.8b07615.
Aitbekova, Aisulu, Wu, Liheng, Wrasman, Cody J., Boubnov, Alexey, Hoffman, Adam S., Goodman, Emmett D., Bare, Simon R., & Cargnello, Matteo. Low-Temperature Restructuring of CeO2-Supported Ru Nanoparticles Determines Selectivity in CO2 Catalytic Reduction. United States. doi:10.1021/jacs.8b07615.
Aitbekova, Aisulu, Wu, Liheng, Wrasman, Cody J., Boubnov, Alexey, Hoffman, Adam S., Goodman, Emmett D., Bare, Simon R., and Cargnello, Matteo. Tue . "Low-Temperature Restructuring of CeO2-Supported Ru Nanoparticles Determines Selectivity in CO2 Catalytic Reduction". United States. doi:10.1021/jacs.8b07615. https://www.osti.gov/servlets/purl/1484844.
@article{osti_1484844,
title = {Low-Temperature Restructuring of CeO2-Supported Ru Nanoparticles Determines Selectivity in CO2 Catalytic Reduction},
author = {Aitbekova, Aisulu and Wu, Liheng and Wrasman, Cody J. and Boubnov, Alexey and Hoffman, Adam S. and Goodman, Emmett D. and Bare, Simon R. and Cargnello, Matteo},
abstractNote = {CO2 reduction to higher value products is a promising way to produce fuels and key chemical building blocks while reducing CO2 emissions. The reaction at atmospheric pressure mainly yields CH4 via methanation and CO via the reverse water-gas shift (RWGS) reaction. Describing catalyst features that control the selectivity of these two pathways is important to determine the formation of specific products. At the same time, identification of morphological changes occurring to catalysts under reaction conditions can be crucial to tune their catalytic performance. In this contribution we investigate the dependency of selectivity for CO2 reduction on the size of Ru nanoparticles (NPs) and on support. We find that even at rather low temperatures (210 °C), oxidative pretreatment induces redispersion of Ru NPs supported on CeO2 and leads to a complete switch in the performance of this material from a well-known selective methanation catalyst to an active and selective RWGS catalyst. By utilizing in situ X-ray absorption spectroscopy, we demonstrate that the low-temperature redispersion process occurs via decomposition of the metal oxide phase with size-dependent kinetics, producing stable single-site RuOx/CeO2 species strongly bound to the CeO2 support that are remarkably selective for CO production. Furthermore, these results show that reaction selectivity can be heavily dependent on catalyst structure and that structural changes of the catalyst can occur even at low temperatures and can go unseen in materials with less defined structures.},
doi = {10.1021/jacs.8b07615},
journal = {Journal of the American Chemical Society},
number = 42,
volume = 140,
place = {United States},
year = {2018},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Save / Share: