skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Costs and consequences of wind turbine wake effects arising from uncoordinated wind energy development

Abstract

Optimal wind farm locations require a strong and reliable wind resource and access to transmission lines. As onshore and offshore wind energy grows, preferred locations become saturated with numerous wind farms. An upwind wind farm generates 'wake effects' (decreases in downwind wind speeds) that undermine a downwind wind farm's power generation and revenues. Here we use a diverse set of analysis tools from the atmospheric science, economic and legal communities to assess costs and consequences of these wake effects, focusing on a West Texas case study. We show that although wake effects vary with atmospheric conditions, they are discernible in monthly power production. In stably stratified atmospheric conditions, wakes can extend 50+ km downwind, resulting in economic losses of several million dollars over six years for our case study. However, our investigation of the legal literature shows no legal guidance for protecting existing wind farms from such significant impacts.

Authors:
ORCiD logo [1];  [2];  [3];  [3]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States); Univ. of Colorado, Boulder, CO (United States)
  2. Univ. of Denver, CO (United States)
  3. Univ. of Colorado, Boulder, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Wind and Water Technologies Office (EE-4W)
OSTI Identifier:
1484339
Report Number(s):
NREL/JA-5000-70979
Journal ID: ISSN 2058-7546
Grant/Contract Number:  
AC36-08GO28308
Resource Type:
Accepted Manuscript
Journal Name:
Nature Energy
Additional Journal Information:
Journal Volume: 4; Journal Issue: 1; Journal ID: ISSN 2058-7546
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
17 WIND ENERGY; 29 ENERGY PLANNING, POLICY, AND ECONOMY; wind energy; wind farm; wake effects; power production; assessment

Citation Formats

Lundquist, J. K., DuVivier, K. K., Kaffine, D., and Tomaszewski, J. M. Costs and consequences of wind turbine wake effects arising from uncoordinated wind energy development. United States: N. p., 2018. Web. doi:10.1038/s41560-018-0281-2.
Lundquist, J. K., DuVivier, K. K., Kaffine, D., & Tomaszewski, J. M. Costs and consequences of wind turbine wake effects arising from uncoordinated wind energy development. United States. doi:10.1038/s41560-018-0281-2.
Lundquist, J. K., DuVivier, K. K., Kaffine, D., and Tomaszewski, J. M. Mon . "Costs and consequences of wind turbine wake effects arising from uncoordinated wind energy development". United States. doi:10.1038/s41560-018-0281-2. https://www.osti.gov/servlets/purl/1484339.
@article{osti_1484339,
title = {Costs and consequences of wind turbine wake effects arising from uncoordinated wind energy development},
author = {Lundquist, J. K. and DuVivier, K. K. and Kaffine, D. and Tomaszewski, J. M.},
abstractNote = {Optimal wind farm locations require a strong and reliable wind resource and access to transmission lines. As onshore and offshore wind energy grows, preferred locations become saturated with numerous wind farms. An upwind wind farm generates 'wake effects' (decreases in downwind wind speeds) that undermine a downwind wind farm's power generation and revenues. Here we use a diverse set of analysis tools from the atmospheric science, economic and legal communities to assess costs and consequences of these wake effects, focusing on a West Texas case study. We show that although wake effects vary with atmospheric conditions, they are discernible in monthly power production. In stably stratified atmospheric conditions, wakes can extend 50+ km downwind, resulting in economic losses of several million dollars over six years for our case study. However, our investigation of the legal literature shows no legal guidance for protecting existing wind farms from such significant impacts.},
doi = {10.1038/s41560-018-0281-2},
journal = {Nature Energy},
number = 1,
volume = 4,
place = {United States},
year = {2018},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Valuing the Wind: Renewable Energy Policies and Air Pollution Avoided
journal, August 2015

  • Novan, Kevin
  • American Economic Journal: Economic Policy, Vol. 7, Issue 3
  • DOI: 10.1257/pol.20130268

Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model
journal, November 2003

  • Ek, M. B.; Mitchell, K. E.; Lin, Y.
  • Journal of Geophysical Research: Atmospheres, Vol. 108, Issue D22
  • DOI: 10.1029/2002JD003296

First in situ evidence of wakes in the far field behind offshore wind farms
journal, February 2018


The Kain–Fritsch Convective Parameterization: An Update
journal, January 2004


Modelling the potential for wind energy integration on China’s coal-heavy electricity grid
journal, June 2016


The climate and air-quality benefits of wind and solar power in the United States
journal, August 2017


Taming hurricanes with arrays of offshore wind turbines
journal, February 2014

  • Jacobson, Mark Z.; Archer, Cristina L.; Kempton, Willett
  • Nature Climate Change, Vol. 4, Issue 3
  • DOI: 10.1038/nclimate2120

Energy Effectiveness of Arbitrary Arrays of Wind Turbines
journal, November 1979

  • Lissaman, P. B. S.
  • Journal of Energy, Vol. 3, Issue 6
  • DOI: 10.2514/3.62441

Crop Wind Energy Experiment (CWEX): Observations of Surface-Layer, Boundary Layer, and Mesoscale Interactions with a Wind Farm
journal, May 2013

  • Rajewski, Daniel A.; Takle, Eugene S.; Lundquist, Julie K.
  • Bulletin of the American Meteorological Society, Vol. 94, Issue 5
  • DOI: 10.1175/BAMS-D-11-00240.1

Using Satellite SAR to Characterize the Wind Flow around Offshore Wind Farms
journal, June 2015

  • Hasager, Charlotte; Vincent, Pauline; Badger, Jake
  • Energies, Vol. 8, Issue 6
  • DOI: 10.3390/en8065413

Local and Mesoscale Impacts of Wind Farms as Parameterized in a Mesoscale NWP Model
journal, September 2012

  • Fitch, Anna C.; Olson, Joseph B.; Lundquist, Julie K.
  • Monthly Weather Review, Vol. 140, Issue 9
  • DOI: 10.1175/MWR-D-11-00352.1

Changes in fluxes of heat, H2O, and CO2 caused by a large wind farm
journal, August 2014


Impacts of wind farms on land surface temperature
journal, April 2012

  • Zhou, Liming; Tian, Yuhong; Baidya Roy, Somnath
  • Nature Climate Change, Vol. 2, Issue 7
  • DOI: 10.1038/nclimate1505

The West Texas Mesonet: A Technical Overview
journal, February 2005

  • Schroeder, J. L.; Burgett, W. S.; Haynie, K. B.
  • Journal of Atmospheric and Oceanic Technology, Vol. 22, Issue 2
  • DOI: 10.1175/JTECH-1690.1

Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave
journal, July 1997

  • Mlawer, Eli J.; Taubman, Steven J.; Brown, Patrick D.
  • Journal of Geophysical Research: Atmospheres, Vol. 102, Issue D14
  • DOI: 10.1029/97JD00237

Wakes in very large wind farms and the effect of neighbouring wind farms
journal, June 2014


The Weather Research and Forecasting Model: Overview, System Efforts, and Future Directions
journal, August 2017

  • Powers, Jordan G.; Klemp, Joseph B.; Skamarock, William C.
  • Bulletin of the American Meteorological Society, Vol. 98, Issue 8
  • DOI: 10.1175/BAMS-D-15-00308.1

Simulating effects of a wind-turbine array using LES and RANS: Simulating turbines using LES and RANS
journal, August 2016

  • Vanderwende, Brian J.; Kosović, Branko; Lundquist, Julie K.
  • Journal of Advances in Modeling Earth Systems, Vol. 8, Issue 3
  • DOI: 10.1002/2016MS000652

Evaluation of the wind farm parameterization in the Weather Research and Forecasting model (version 3.8.1) with meteorological and turbine power data
journal, January 2017

  • Lee, Joseph C. Y.; Lundquist, Julie K.
  • Geoscientific Model Development, Vol. 10, Issue 11
  • DOI: 10.5194/gmd-10-4229-2017

Mesoscale Influences of Wind Farms throughout a Diurnal Cycle
journal, July 2013

  • Fitch, Anna C.; Lundquist, Julie K.; Olson, Joseph B.
  • Monthly Weather Review, Vol. 141, Issue 7
  • DOI: 10.1175/MWR-D-12-00185.1

An Improved Mellor–Yamada Level-3 Model: Its Numerical Stability and Application to a Regional Prediction of Advection Fog
journal, March 2006


Renewable energy policy design and framing influence public support in the United States
journal, June 2017


The Windy Commons?
journal, May 2010

  • Kaffine, Daniel T.; Worley, Christopher M.
  • Environmental and Resource Economics, Vol. 47, Issue 2
  • DOI: 10.1007/s10640-010-9369-2

A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation
journal, January 2004


Ground-level climate at a peatland wind farm in Scotland is affected by wind turbine operation
journal, April 2016


The ERA-Interim reanalysis: configuration and performance of the data assimilation system
journal, April 2011

  • Dee, D. P.; Uppala, S. M.; Simmons, A. J.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 137, Issue 656
  • DOI: 10.1002/qj.828

Wake effects of large offshore wind farms identified from satellite SAR
journal, October 2005

  • Christiansen, Merete Bruun; Hasager, Charlotte B.
  • Remote Sensing of Environment, Vol. 98, Issue 2-3
  • DOI: 10.1016/j.rse.2005.07.009

Observing and Simulating Wind-Turbine Wakes During the Evening Transition
journal, May 2017


A Revised Scheme for the WRF Surface Layer Formulation
journal, March 2012

  • Jiménez, Pedro A.; Dudhia, Jimy; González-Rouco, J. Fidel
  • Monthly Weather Review, Vol. 140, Issue 3
  • DOI: 10.1175/MWR-D-11-00056.1

Saturation wind power potential and its implications for wind energy
journal, September 2012

  • Jacobson, M. Z.; Archer, C. L.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 39
  • DOI: 10.1073/pnas.1208993109

Emissions Savings from Wind Power Generation in Texas
journal, January 2013

  • Kaffine, Daniel T.; McBee, Brannin J.; Lieskovsky, Jozef
  • The Energy Journal, Vol. 34, Issue 1
  • DOI: 10.5547/01956574.34.1.7

Quantifying the Impact of Wind Turbine Wakes on Power Output at Offshore Wind Farms
journal, August 2010

  • Barthelmie, R. J.; Pryor, S. C.; Frandsen, S. T.
  • Journal of Atmospheric and Oceanic Technology, Vol. 27, Issue 8, p. 1302-1317
  • DOI: 10.1175/2010JTECHA1398.1

Regional climate model simulations indicate limited climatic impacts by operational and planned European wind farms
journal, February 2014

  • Vautard, Robert; Thais, Françoise; Tobin, Isabelle
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4196

    Works referencing / citing this record:

    Wind farm power optimization through wake steering
    journal, July 2019

    • Howland, Michael F.; Lele, Sanjiva K.; Dabiri, John O.
    • Proceedings of the National Academy of Sciences, Vol. 116, Issue 29
    • DOI: 10.1073/pnas.1903680116

    Wind farm power optimization through wake steering
    journal, July 2019

    • Howland, Michael F.; Lele, Sanjiva K.; Dabiri, John O.
    • Proceedings of the National Academy of Sciences, Vol. 116, Issue 29
    • DOI: 10.1073/pnas.1903680116