DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantitative In Situ Studies of Dynamic Fracture in Brittle Solids Using Dynamic X-ray Phase Contrast Imaging

Abstract

We demonstrate the use of X-ray phase contrast imaging with sub-microsecond temporal resolution to obtain quantitative visualization of dynamic fracture processes in brittle solids. We examine an amorphous solid (fused silica), a ceramic single crystal (single-crystal quartz), and a polycrystalline ceramic (boron carbide), in the form of single-edge notched specimens loaded using a three-point apparatus at nominal strain rates up to ~800 s–1. We observe that the crack tip speed for boron carbide is relatively independent of mode I stress intensity factor rate (K˙I) for these rates of loading, while that of fused silica and single-crystal quartz increases with K˙I. Further, for the amorphous and single crystal cases, we observe the development of a crack tip instability in the form of crack branching as the crack tip speed approaches 45% of the Rayleigh wave speed. This suggests that strain-rate-dependent mechanisms contribute to crack branching. Such mechanisms may, in turn, affect the macroscopic fracture properties of these materials.

Authors:
ORCiD logo [1];  [2];  [3];  [3];  [4];  [5];  [6];  [6]; ORCiD logo [7];  [8];  [1]
  1. Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Materials Science and Engineering and Hopkins Extreme Materials Inst.
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  3. Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
  4. Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) and Dynamic Compression Sector (DCS)
  5. Army Research Lab., Adelphi, MD (United States). Weapons and Materials Research Directorate
  6. Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Materials Science and Engineering
  7. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  8. Johns Hopkins Univ., Baltimore, MD (United States). Hopkins Extreme Materials Inst. and Dept. of Mechanical Engineering
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Washington State Univ., Pullman, WA (United States). Inst. of Shock Physics
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division; Defense Threat Reduction Agency (DTRA); US Army Research Laboratory (USARL); USDOE National Nuclear Security Administration (NNSA), Office of Defense Programs (DP)
Contributing Org.:
Washington State Univ., Pullman, WA (United States). Inst. for Shock Physics and Dynamic Compression Sector (DCS)
OSTI Identifier:
1473815
Alternate Identifier(s):
OSTI ID: 1484023; OSTI ID: 1571759
Report Number(s):
LA-UR-18-20842
Journal ID: ISSN 0014-4851
Grant/Contract Number:  
AC52-06NA25396; HDTRA1-15-1-0056; W911NF-12-2-0022; NA0002442; AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Experimental Mechanics
Additional Journal Information:
Journal Volume: 58; Journal Issue: 9; Journal ID: ISSN 0014-4851
Publisher:
Springer
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Phase contrast X-ray imaging · Brittle materials · Dynamic Fracture; X-ray phase contrast imaging; Brittle materials; Dynamic Fracture; crack tip velocity; brittle materials; dynamic Fracture; phase contrast X-ray imaging

Citation Formats

Leong, Andrew F. T., Robinson, Andrew K., Fezzaa, K., Sun, T., Sinclair, N., Casem, D. T., Lambert, P. K., Hustedt, C. J., Daphalapurkar, Nitin P., Ramesh, K. T., and Hufnagel, T. C. Quantitative In Situ Studies of Dynamic Fracture in Brittle Solids Using Dynamic X-ray Phase Contrast Imaging. United States: N. p., 2018. Web. doi:10.1007/s11340-018-0414-3.
Leong, Andrew F. T., Robinson, Andrew K., Fezzaa, K., Sun, T., Sinclair, N., Casem, D. T., Lambert, P. K., Hustedt, C. J., Daphalapurkar, Nitin P., Ramesh, K. T., & Hufnagel, T. C. Quantitative In Situ Studies of Dynamic Fracture in Brittle Solids Using Dynamic X-ray Phase Contrast Imaging. United States. https://doi.org/10.1007/s11340-018-0414-3
Leong, Andrew F. T., Robinson, Andrew K., Fezzaa, K., Sun, T., Sinclair, N., Casem, D. T., Lambert, P. K., Hustedt, C. J., Daphalapurkar, Nitin P., Ramesh, K. T., and Hufnagel, T. C. Fri . "Quantitative In Situ Studies of Dynamic Fracture in Brittle Solids Using Dynamic X-ray Phase Contrast Imaging". United States. https://doi.org/10.1007/s11340-018-0414-3. https://www.osti.gov/servlets/purl/1473815.
@article{osti_1473815,
title = {Quantitative In Situ Studies of Dynamic Fracture in Brittle Solids Using Dynamic X-ray Phase Contrast Imaging},
author = {Leong, Andrew F. T. and Robinson, Andrew K. and Fezzaa, K. and Sun, T. and Sinclair, N. and Casem, D. T. and Lambert, P. K. and Hustedt, C. J. and Daphalapurkar, Nitin P. and Ramesh, K. T. and Hufnagel, T. C.},
abstractNote = {We demonstrate the use of X-ray phase contrast imaging with sub-microsecond temporal resolution to obtain quantitative visualization of dynamic fracture processes in brittle solids. We examine an amorphous solid (fused silica), a ceramic single crystal (single-crystal quartz), and a polycrystalline ceramic (boron carbide), in the form of single-edge notched specimens loaded using a three-point apparatus at nominal strain rates up to ~800 s–1. We observe that the crack tip speed for boron carbide is relatively independent of mode I stress intensity factor rate (K˙I) for these rates of loading, while that of fused silica and single-crystal quartz increases with K˙I. Further, for the amorphous and single crystal cases, we observe the development of a crack tip instability in the form of crack branching as the crack tip speed approaches 45% of the Rayleigh wave speed. This suggests that strain-rate-dependent mechanisms contribute to crack branching. Such mechanisms may, in turn, affect the macroscopic fracture properties of these materials.},
doi = {10.1007/s11340-018-0414-3},
journal = {Experimental Mechanics},
number = 9,
volume = 58,
place = {United States},
year = {Fri Sep 07 00:00:00 EDT 2018},
month = {Fri Sep 07 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 13 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A scaling law for the dynamic strength of brittle solids
journal, May 2013


Dynamic failure of solids
journal, March 1987


The cohesive zone model: advantages, limitations and challenges
journal, January 2002


Dynamic quantized fracture mechanics
journal, July 2006


An interacting micro-crack damage model for failure of brittle materials under compression
journal, March 2008


Dynamic fracture with meshfree enriched XFEM
journal, January 2010


Numerical Simulations of Dynamic Fracture Growth Based on a Cohesive Zone Model with Microcracks
journal, September 2014


Recent developments in dynamic fracture: some perspectives
journal, August 2015


Massively parallel adaptive mesh refinement and coarsening for dynamic fracture simulations
journal, January 2016

  • Alhadeff, Andrei; Leon, Sofie E.; Celes, Waldemar
  • Engineering with Computers, Vol. 32, Issue 3
  • DOI: 10.1007/s00366-015-0431-0

Linienstrukturen an Bruchfl�chen
journal, May 1939


Ultrasonic Fractography Studies on Discontinuous Fracture Propagation in Polymers
journal, January 1985

  • Takahashi, Kiyoshi; Mada, Toshio
  • Japanese Journal of Applied Physics, Vol. 24, Issue S1
  • DOI: 10.7567/JJAPS.24S1.196

Crack Front Waves in Dynamic Fracture *
journal, May 2003

  • Fineberg, J.; Sharon, E.; Cohen, G.
  • International Journal of Fracture, Vol. 121, Issue 1/2
  • DOI: 10.1023/A:1026296929110

High-speed photography
journal, September 1983


Visualization of the failure of quartz under quasi-static and dynamic compression
journal, January 2010

  • Kimberley, J.; Ramesh, K. T.; Barnouin, O. S.
  • Journal of Geophysical Research, Vol. 115, Issue B8
  • DOI: 10.1029/2009JB007006

Spatial and temporal evolution of dynamic damage in single crystal <mml:math altimg="si40.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mrow><mml:mi>α</mml:mi></mml:mrow></mml:math>-quartz
journal, August 2015


Dynamic fracture of inorganic glasses by hard spherical and conical projectiles
journal, March 2015

  • Chaudhri, M. Munawar
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 373, Issue 2038
  • DOI: 10.1098/rsta.2014.0135

Static and dynamic compression strength of hot-pressed boron carbide using a dumbbell-shaped specimen
journal, May 2017

  • Swab, Jeffrey J.; Meredith, Christopher S.; Casem, Daniel T.
  • Journal of Materials Science, Vol. 52, Issue 17
  • DOI: 10.1007/s10853-017-1210-7

X-ray dynamic observation of the evolution of the fracture process zone in a quasi-brittle specimen
journal, August 2015


X-ray phase-contrast imaging: from pre-clinical applications towards clinics
journal, December 2012

  • Bravin, Alberto; Coan, Paola; Suortti, Pekka
  • Physics in Medicine and Biology, Vol. 58, Issue 1
  • DOI: 10.1088/0031-9155/58/1/R1

On the evolution and relative merits of hard X-ray phase-contrast imaging methods
journal, March 2014

  • Wilkins, S. W.; Nesterets, Ya. I.; Gureyev, T. E.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 372, Issue 2010
  • DOI: 10.1098/rsta.2013.0021

Refracting Röntgen’s rays: Propagation-based x-ray phase contrast for biomedical imaging
journal, May 2009

  • Gureyev, T. E.; Mayo, S. C.; Myers, D. E.
  • Journal of Applied Physics, Vol. 105, Issue 10
  • DOI: 10.1063/1.3115402

Phase-contrast imaging using polychromatic hard X-rays
journal, November 1996

  • Wilkins, S. W.; Gureyev, T. E.; Gao, D.
  • Nature, Vol. 384, Issue 6607
  • DOI: 10.1038/384335a0

Ultrafast, high resolution, phase contrast imaging of impact response with synchrotron radiation
journal, March 2012

  • Jensen, B. J.; Luo, S. N.; Hooks, D. E.
  • AIP Advances, Vol. 2, Issue 1
  • DOI: 10.1063/1.3696041

High speed synchrotron x-ray phase contrast imaging of dynamic material response to split Hopkinson bar loading
journal, February 2013

  • Hudspeth, M.; Claus, B.; Dubelman, S.
  • Review of Scientific Instruments, Vol. 84, Issue 2
  • DOI: 10.1063/1.4789780

In situ investigation of the dynamic response of energetic materials using IMPULSE at the Advanced Photon Source
journal, May 2014


High speed X-ray phase contrast imaging of energetic composites under dynamic compression
journal, September 2016

  • Parab, Niranjan D.; Roberts, Zane A.; Harr, Michael H.
  • Applied Physics Letters, Vol. 109, Issue 13
  • DOI: 10.1063/1.4963137

In situ observation of fracture processes in high-strength concretes and limestone using high-speed X-ray phase-contrast imaging
journal, January 2017

  • Parab, Niranjan D.; Guo, Zherui; Hudspeth, Matthew
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 375, Issue 2085
  • DOI: 10.1098/rsta.2016.0178

Dynamic fracture behavior of single and contacting Poly(methyl methacrylate) particles
journal, November 2017

  • Parab, Niranjan D.; Guo, Zherui; Hudspeth, Matthew C.
  • Advanced Powder Technology, Vol. 28, Issue 11
  • DOI: 10.1016/j.apt.2017.08.021

Controlling shockwave dynamics using architecture in periodic porous materials
journal, April 2017

  • Branch, Brittany; Ionita, Axinte; Clements, Bradford E.
  • Journal of Applied Physics, Vol. 121, Issue 13
  • DOI: 10.1063/1.4978910

Simultaneous, single-pulse, synchrotron x-ray imaging and diffraction under gas gun loading
journal, May 2016

  • Fan, D.; Huang, J. W.; Zeng, X. L.
  • Review of Scientific Instruments, Vol. 87, Issue 5
  • DOI: 10.1063/1.4950869

Analysis of a Three-Bar Kolsky Apparatus for High-Rate Three-Point Flexure
journal, February 2015

  • Casem, Daniel T.; Dwivedi, Ajmer K.; Swab, Jeffery J.
  • Journal of Dynamic Behavior of Materials, Vol. 1, Issue 1
  • DOI: 10.1007/s40870-014-0002-2

Wave Propagation in the Split Hopkinson Pressure Bar
journal, January 1983

  • Follansbee, P. S.; Frantz, C.
  • Journal of Engineering Materials and Technology, Vol. 105, Issue 1
  • DOI: 10.1115/1.3225620

The effects of defects on the uniaxial compressive strength and failure of an advanced ceramic
journal, January 2016


Gas gun shock experiments with single-pulse x-ray phase contrast imaging and diffraction at the Advanced Photon Source
journal, July 2012

  • Luo, S. N.; Jensen, B. J.; Hooks, D. E.
  • Review of Scientific Instruments, Vol. 83, Issue 7
  • DOI: 10.1063/1.4733704

XOP v2.4: recent developments of the x-ray optics software toolkit
conference, September 2011

  • Sánchez del Río, Manuel; Dejus, Roger J.
  • SPIE Optical Engineering + Applications, SPIE Proceedings
  • DOI: 10.1117/12.893911

Introduction to Time Series Modeling
journal, September 2010


Anisotropy of Mechanical Properties in a Hot-Pressed Boron Carbide
journal, August 2016

  • Farbaniec, Lukasz; Hogan, James; McCauley, James
  • International Journal of Applied Ceramic Technology, Vol. 13, Issue 6
  • DOI: 10.1111/ijac.12585

Effect of wear of diamond wire on surface morphology, roughness and subsurface damage of silicon wafers
journal, October 2016


Fragmentation of an advanced ceramic under ballistic impact: Mechanisms and microstructure
journal, April 2017


On the Rayleigh Wave Speed in Orthotropic Elastic Solids
journal, April 2005


Three-dimensional numerical simulations of dynamic fracture in silicon carbide reinforced aluminum
journal, June 2004


Some simple rules for contrast, signal-to-noise and resolution in in-line x-ray phase-contrast imaging
journal, January 2008

  • Gureyev, Timur E.; Nesterets, Yakov I.; Stevenson, Andrew W.
  • Optics Express, Vol. 16, Issue 5
  • DOI: 10.1364/OE.16.003223

Microbranching instability and the dynamic fracture of brittle materials
journal, September 1996


Mechanics of crack curving and branching ? a dynamic fracture analysis
journal, January 1985

  • Ramulu, M.; Kobayashi, A. S.
  • International Journal of Fracture, Vol. 27, Issue 3-4
  • DOI: 10.1007/BF00017967

Theory of dynamic crack branching in brittle materials
journal, April 2007


Dynamic fracture mechanics
journal, January 1992


High-speed photography
journal, October 1969


Works referencing / citing this record: