DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Lithium Intercalation in Anatase Titanium Vacancies and the Role of Local Anionic Environment

Abstract

The structure of bulk and nondefective compounds is generally described with crystal models built from well mastered techniques such the analysis of an X-ray diffractogram. The presence of defects, such as cationic vacancies, locally disrupt the long-range order, with the appearance of local structures with order extending only a few nanometers. To probe and describe the electrochemical properties of cation-deficient anatase, we investigated a series of materials having different concentrations of vacancies, i.e., Ti1–x–y$$\square$$x+yO2–4(x+y)F4x(OH)4y, and compared their properties with respect to defect-free stoichiometric anatase TiO2. At first, we characterized the series of materials Ti1–x–y$$\square$$x+yO2–4(x+y)F4x(OH)4y by means of pair distribution function (PDF), 19F nuclear magnetic resonance (NMR), Raman and X-ray photoelectron spectroscopies, to probe the compositional and structural features. Second, we characterized the insertion electrochemical properties vs metallic lithium where we emphasized the beneficial role of the vacancies on the cyclability of the electrode under high C-rate, with performances scaling with the concentration of vacancies. The improved properties were explained by the change of the lithium insertion mechanism due to the presence of the vacancies, which act as host sites and suppress the phase transition typically observed in pure TiO2, and further favor diffusive transport of lithium within the structure. NMR spectroscopy performed on lithiated samples provides evidence for the insertion of lithium in vacancies. By combining electrochemistry and DFT-calculations, we characterized the electrochemical signatures of the lithium insertion in the vacancies. Importantly, we found that the insertion voltage largely depends on the local anionic environment of the vacancy with a fluoride and hydroxide-rich environments, yielding high and low insertion voltages, respectively. Lastly, this work further supports the beneficial use of defects engineering in electrodes for batteries and provides new fundamental knowledge in the insertion chemistry of cationic vacancies as host sites.

Authors:
ORCiD logo [1];  [2];  [3];  [4];  [5];  [6]; ORCiD logo [6];  [7];  [2];  [2];  [2]; ORCiD logo [8]; ORCiD logo [9]
  1. Sorbonne Univ., Paris (France). Physico-chimie des électrolytes et nano-systèmes interfaciaux, PHENIX; Tongji Univ., Shanghai (China). Inst. of New Energy for Vehicles, School of Materials Science and Engineering
  2. Sorbonne Univ., Paris (France). Physico-chimie des électrolytes et nano-systèmes interfaciaux, PHENIX
  3. Univ. of Bath, Bath (United Kingdom). Dept. of Chemistry
  4. PSL Research Univ., Paris (France). Inst. de Recherche de Chimie Paris (IRCP)
  5. CNRS-Univ. Paris Est, Thiais (France). Inst. de Chimie et des Matériaux Paris-Est
  6. Le Mans Univ.-CNRS, Le Mans (France). Inst. des Molécules et Matériaux du Mans
  7. Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS), X-ray Science Division
  8. Sorbonne Univ., Paris (France). Collège de France, Lab. de Chimie de la Matière Condensée de Paris; Réseau sur le Stockage Electrochimique de l’Energie (RS2E), Amiens (France)
  9. Sorbonne Univ., Paris (France). Physico-chimie des électrolytes et nano-systèmes interfaciaux, PHENIX; Réseau sur le Stockage Electrochimique de l’Energie (RS2E), Amiens (France)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1484020
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 30; Journal Issue: 9; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE

Citation Formats

Ma, Jiwei, Li, Wei, Morgan, Benjamin J., Światowska, Jolanta, Baddour-Hadjean, Rita, Body, Monique, Legein, Christophe, Borkiewicz, Olaf J., Leclerc, Sandrine, Groult, Henri, Lantelme, Frédéric, Laberty-Robert, Christel, and Dambournet, Damien. Lithium Intercalation in Anatase Titanium Vacancies and the Role of Local Anionic Environment. United States: N. p., 2018. Web. doi:10.1021/acs.chemmater.8b00925.
Ma, Jiwei, Li, Wei, Morgan, Benjamin J., Światowska, Jolanta, Baddour-Hadjean, Rita, Body, Monique, Legein, Christophe, Borkiewicz, Olaf J., Leclerc, Sandrine, Groult, Henri, Lantelme, Frédéric, Laberty-Robert, Christel, & Dambournet, Damien. Lithium Intercalation in Anatase Titanium Vacancies and the Role of Local Anionic Environment. United States. https://doi.org/10.1021/acs.chemmater.8b00925
Ma, Jiwei, Li, Wei, Morgan, Benjamin J., Światowska, Jolanta, Baddour-Hadjean, Rita, Body, Monique, Legein, Christophe, Borkiewicz, Olaf J., Leclerc, Sandrine, Groult, Henri, Lantelme, Frédéric, Laberty-Robert, Christel, and Dambournet, Damien. Sat . "Lithium Intercalation in Anatase Titanium Vacancies and the Role of Local Anionic Environment". United States. https://doi.org/10.1021/acs.chemmater.8b00925. https://www.osti.gov/servlets/purl/1484020.
@article{osti_1484020,
title = {Lithium Intercalation in Anatase Titanium Vacancies and the Role of Local Anionic Environment},
author = {Ma, Jiwei and Li, Wei and Morgan, Benjamin J. and Światowska, Jolanta and Baddour-Hadjean, Rita and Body, Monique and Legein, Christophe and Borkiewicz, Olaf J. and Leclerc, Sandrine and Groult, Henri and Lantelme, Frédéric and Laberty-Robert, Christel and Dambournet, Damien},
abstractNote = {The structure of bulk and nondefective compounds is generally described with crystal models built from well mastered techniques such the analysis of an X-ray diffractogram. The presence of defects, such as cationic vacancies, locally disrupt the long-range order, with the appearance of local structures with order extending only a few nanometers. To probe and describe the electrochemical properties of cation-deficient anatase, we investigated a series of materials having different concentrations of vacancies, i.e., Ti1–x–y$\square$x+yO2–4(x+y)F4x(OH)4y, and compared their properties with respect to defect-free stoichiometric anatase TiO2. At first, we characterized the series of materials Ti1–x–y$\square$x+yO2–4(x+y)F4x(OH)4y by means of pair distribution function (PDF), 19F nuclear magnetic resonance (NMR), Raman and X-ray photoelectron spectroscopies, to probe the compositional and structural features. Second, we characterized the insertion electrochemical properties vs metallic lithium where we emphasized the beneficial role of the vacancies on the cyclability of the electrode under high C-rate, with performances scaling with the concentration of vacancies. The improved properties were explained by the change of the lithium insertion mechanism due to the presence of the vacancies, which act as host sites and suppress the phase transition typically observed in pure TiO2, and further favor diffusive transport of lithium within the structure. NMR spectroscopy performed on lithiated samples provides evidence for the insertion of lithium in vacancies. By combining electrochemistry and DFT-calculations, we characterized the electrochemical signatures of the lithium insertion in the vacancies. Importantly, we found that the insertion voltage largely depends on the local anionic environment of the vacancy with a fluoride and hydroxide-rich environments, yielding high and low insertion voltages, respectively. Lastly, this work further supports the beneficial use of defects engineering in electrodes for batteries and provides new fundamental knowledge in the insertion chemistry of cationic vacancies as host sites.},
doi = {10.1021/acs.chemmater.8b00925},
journal = {Chemistry of Materials},
number = 9,
volume = 30,
place = {United States},
year = {Sat Apr 07 00:00:00 EDT 2018},
month = {Sat Apr 07 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 36 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Something from Nothing: Enhancing Electrochemical Charge Storage with Cation Vacancies
journal, May 2012

  • Hahn, Benjamin P.; Long, Jeffrey W.; Rolison, Debra R.
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar200238w

Review—Battery Materials: Why Defect Chemistry?
journal, January 2015

  • Maier, Joachim
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0011514jes

γ-MnO2 for Li batteries
journal, September 1999


Reactivity of the submicron molybdenum ferrites towards oxygen and formation of new cation deficient spinels
journal, September 1993


Electrochemical Li-ion storage in defect spinel iron oxides: the critical role of cation vacancies
journal, January 2011

  • Hahn, Benjamin P.; Long, Jeffrey W.; Mansour, Azzam N.
  • Energy & Environmental Science, Vol. 4, Issue 4
  • DOI: 10.1039/c0ee00819b

High Substitution Rate in TiO 2 Anatase Nanoparticles with Cationic Vacancies for Fast Lithium Storage
journal, July 2015


Atomic Insights into Nanoparticle Formation of Hydroxyfluorinated Anatase Featuring Titanium Vacancies
journal, June 2016


n-Butyllithium—An Effective, General Cathode Screening Agent
journal, January 1977

  • Whittingham, M. Stanley
  • Journal of The Electrochemical Society, Vol. 124, Issue 9
  • DOI: 10.1149/1.2133659

Applications of an amorphous silicon-based area detector for high-resolution, high-sensitivity and fast time-resolved pair distribution function measurements
journal, May 2007

  • Chupas, Peter J.; Chapman, Karena W.; Lee, Peter L.
  • Journal of Applied Crystallography, Vol. 40, Issue 3
  • DOI: 10.1107/S0021889807007856

Rapid-acquisition pair distribution function (RA-PDF) analysis
journal, November 2003

  • Chupas, Peter J.; Qiu, Xiangyun; Hanson, Jonathan C.
  • Journal of Applied Crystallography, Vol. 36, Issue 6, p. 1342-1347
  • DOI: 10.1107/S0021889803017564

Two-dimensional detector software: From real detector to idealised image or two-theta scan
journal, January 1996

  • Hammersley, A. P.; Svensson, S. O.; Hanfland, M.
  • High Pressure Research, Vol. 14, Issue 4-6, p. 235-248
  • DOI: 10.1080/08957959608201408

PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data
journal, July 2004

  • Qiu, Xiangyun; Thompson, Jeroen W.; Billinge, Simon J. L.
  • Journal of Applied Crystallography, Vol. 37, Issue 4, p. 678-678
  • DOI: 10.1107/S0021889804011744

PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals
journal, July 2007


Modelling one- and two-dimensional solid-state NMR spectra: Modelling 1D and 2D solid-state NMR spectra
journal, December 2001

  • Massiot, Dominique; Fayon, Franck; Capron, Mickael
  • Magnetic Resonance in Chemistry, Vol. 40, Issue 1
  • DOI: 10.1002/mrc.984

Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements
journal, October 1994


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Surface states on NiO (100) and the origin of the contrast reversal in atomically resolved scanning tunneling microscope images
journal, August 1997

  • Dudarev, S. L.; Liechtenstein, A. I.; Castell, M. R.
  • Physical Review B, Vol. 56, Issue 8
  • DOI: 10.1103/PhysRevB.56.4900

Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
journal, January 1998

  • Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.
  • Physical Review B, Vol. 57, Issue 3, p. 1505-1509
  • DOI: 10.1103/PhysRevB.57.1505

GGA + U description of lithium intercalation into anatase TiO 2
journal, October 2010


Role of Lithium Ordering in the Li x TiO 2 Anatase → Titanate Phase Transition
journal, June 2011

  • Morgan, Benjamin J.; Watson, Graeme W.
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 14
  • DOI: 10.1021/jz200718e

Lithium intercalation into TiO 2 (B): A comparison of LDA, GGA, and GGA+ U density functional calculations
journal, July 2012


Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2
journal, September 2017

  • Koketsu, Toshinari; Ma, Jiwei; Morgan, Benjamin J.
  • Nature Materials, Vol. 16, Issue 11
  • DOI: 10.1038/nmat4976

Tuning the Electronic Structure of Anatase Through Fluorination
journal, June 2015

  • Corradini, Dario; Dambournet, Damien; Salanne, Mathieu
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep11553

Emerging operando and x-ray pair distribution function methods for energy materials development
journal, March 2016


The critical role of point defects in improving the specific capacitance of δ-MnO2 nanosheets
journal, February 2017

  • Gao, Peng; Metz, Peter; Hey, Trevyn
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14559

Lattice dynamics and dielectric properties of TiO 2 anatase: A first-principles study
journal, October 2002


Raman spectrum of anatase, TiO2
journal, December 1978

  • Ohsaka, Toshiaki; Izumi, Fujio; Fujiki, Yoshinori
  • Journal of Raman Spectroscopy, Vol. 7, Issue 6
  • DOI: 10.1002/jrs.1250070606

Raman spectra of titanium dioxide
journal, May 1982


Raman spectra of titanium dioxide (anatase, rutile) with identified oxygen isotopes (16, 17, 18)
journal, January 2012

  • Frank, Otakar; Zukalova, Marketa; Laskova, Barbora
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 42
  • DOI: 10.1039/c2cp42763j

Oxygen-isotope labeled titania: Ti18O2
journal, January 2011

  • Kavan, Ladislav; Zukalova, Marketa; Ferus, Martin
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 24
  • DOI: 10.1039/c1cp20775j

Vibrational dynamics of anatase TiO 2 : Polarized Raman spectroscopy and ab initio calculations
journal, May 2010


Vibrational–Electrical Properties Relationship in Donor-Doped TiO 2 by Raman Spectroscopy
journal, August 2016

  • Mazzolini, P.; Russo, V.; Casari, C. S.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 33
  • DOI: 10.1021/acs.jpcc.6b05282

XPS characterization of surface and interfacial structure of sputtered TiNi films on Si substrate
journal, August 2005


Effects of F - Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO 2 Powders
journal, September 2002


Anatase TiO2 single crystals with a large percentage of reactive facets
journal, May 2008

  • Yang, Hua Gui; Sun, Cheng Hua; Qiao, Shi Zhang
  • Nature, Vol. 453, Issue 7195
  • DOI: 10.1038/nature06964

Surface fluorination of single-phase TiO2 by thermal shock method for enhanced UV and visible light induced photocatalytic activity
journal, January 2014


Electrochemical lithium reactivity with nanotextured anatase-type TiO2
journal, January 2005

  • Sudant, Guillaume; Baudrin, Emmanuel; Larcher, Dominique
  • Journal of Materials Chemistry, Vol. 15, Issue 12, p. 1263-1269
  • DOI: 10.1039/b416176a

The electronic structure and ionic diffusion of nanoscale LiTiO2 anatase
journal, January 2009

  • Borghols, W. J. H.; Lützenkirchen-Hecht, D.; Haake, U.
  • Physical Chemistry Chemical Physics, Vol. 11, Issue 27
  • DOI: 10.1039/b823142g

Study of the insertion mechanism of lithium into anatase by operando X-ray diffraction and absorption spectroscopy
journal, December 2014


Large Impact of Particle Size on Insertion Reactions. A Case for Anatase Li x TiO 2
journal, April 2007

  • Wagemaker, Marnix; Borghols, Wouter J. H.; Mulder, Fokko M.
  • Journal of the American Chemical Society, Vol. 129, Issue 14
  • DOI: 10.1021/ja067733p

NMR parameters in alkali, alkaline earth and rare earth fluorides from first principle calculations
journal, January 2011

  • Sadoc, Aymeric; Body, Monique; Legein, Christophe
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 41
  • DOI: 10.1039/c1cp21253b

Pseudocapacitive Contributions to Electrochemical Energy Storage in TiO2 (Anatase) Nanoparticles
journal, October 2007

  • Wang, John; Polleux, Julien; Lim, James
  • The Journal of Physical Chemistry C, Vol. 111, Issue 40, p. 14925-14931
  • DOI: 10.1021/jp074464w

Lithium insertion into TiO2 (anatase): electrochemistry, Raman spectroscopy, and isotope labeling
journal, March 2014


Impact of Particle Size on the Non-Equilibrium Phase Transition of Lithium-Inserted Anatase TiO 2
journal, February 2014

  • Shen, Kun; Chen, Hao; Klaver, Frits
  • Chemistry of Materials, Vol. 26, Issue 4
  • DOI: 10.1021/cm4037346

Design and Preparation of Materials for Advanced Electrochemical Storage
journal, June 2012

  • Melot, Brent C.; Tarascon, J. -M.
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar300088q

Lithium insertion into titanium dioxide (anatase) electrodes: microstructure and electrolyte effects
journal, March 2001

  • Fattakhova, Dina; Kavan, Ladislav; Krtil, Petr
  • Journal of Solid State Electrochemistry, Vol. 5, Issue 3
  • DOI: 10.1007/s100080000138

Thermodynamic and Mass Transport Properties of “LiAl”
journal, January 1979

  • Wen, C. John
  • Journal of The Electrochemical Society, Vol. 126, Issue 12
  • DOI: 10.1149/1.2128939

Understanding Li Diffusion in Li-Intercalation Compounds
journal, May 2012

  • Van der Ven, Anton; Bhattacharya, Jishnu; Belak, Anna A.
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar200329r

Analysis of a phase transition process controlled by diffusion, application to lithium insertion into V2O5
journal, September 2002


Determination of the Kinetic Parameters of Mixed-Conducting Electrodes and Application to the System Li[sub 3]Sb
journal, January 1977

  • Weppner, W.
  • Journal of The Electrochemical Society, Vol. 124, Issue 10
  • DOI: 10.1149/1.2133112

Electrochemical Study of Phase Transition Processes in Lithium Insertion in V[sub 2]O[sub 5] Electrodes
journal, January 2003

  • Lantelme, Frédéric; Mantoux, Arnaud; Groult, Henri
  • Journal of The Electrochemical Society, Vol. 150, Issue 9
  • DOI: 10.1149/1.1595658

Electrochemical study of phase transition processes in lithium batteries
journal, January 2006

  • Lantelme, Frédéric; Mantoux, Arnaud; Groult, Henri
  • Solid State Ionics, Vol. 177, Issue 3-4
  • DOI: 10.1016/j.ssi.2005.10.024

Works referencing / citing this record:

Rechargeable Aqueous Electrochromic Batteries Utilizing Ti‐Substituted Tungsten Molybdenum Oxide Based Zn 2+ Ion Intercalation Cathodes
journal, February 2019

  • Li, Haizeng; McRae, Liam; Firby, Curtis J.
  • Advanced Materials, Vol. 31, Issue 15
  • DOI: 10.1002/adma.201807065

A mechanistic study of mesoporous TiO 2 nanoparticle negative electrode materials with varying crystallinity for lithium ion batteries
journal, January 2020

  • Deng, Changjian; Lau, Miu Lun; Ma, Chunrong
  • Journal of Materials Chemistry A, Vol. 8, Issue 6
  • DOI: 10.1039/c9ta12499c

Controlled hydroxy-fluorination reaction of anatase to promote Mg 2+ mobility in rechargeable magnesium batteries
journal, January 2018

  • Ma, Jiwei; Koketsu, Toshinari; Morgan, Benjamin. J.
  • Chemical Communications, Vol. 54, Issue 72
  • DOI: 10.1039/c8cc04136a