skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The electrochemical storage mechanism in oxy-hydroxyfluorinated anatase for sodium-ion batteries

Abstract

Replacing lithium ions with sodium ions as the charge carriers in rechargeable batteries can induce noticeable differences in the electrochemical storage mechanisms of electrode materials. Many material parameters, such as particle size, morphology, and the presence of defects, are known to further affect the storage mechanism. Here, we report an investigation of how the introduction of titanium vacancies into anatase TiO 2 affects the sodium storage mechanism. From pair distribution function analysis, we observe that sodium ions are inserted into titanium vacancies at the early stage of the discharge process. This is supported by density functional theory calculations, which predict that sodium insertion is more favourable at vacancies than at interstitial sites. Our calculations also show that the intercalation voltage is sensitive to the anion coordination environment of the vacancy. Sodiation to higher concentrations induces a phase transition toward a disordered rhombohedral structure, similar to that observed in defect-free TiO 2. Finally, we find that the X-ray diffraction pattern of the rhombohedral phase drastically changes depending on the composition and degree of disorder, providing further comprehension on the sodium storage mechanism of anatase.

Authors:
 [1];  [2]; ORCiD logo [3];  [4]; ORCiD logo [5];  [5];  [1]; ORCiD logo [2]; ORCiD logo [6]
  1. Sorbonne Univ., Paris (France). Physico-chimie des électrolytes et nano-systèmes interfaciaux
  2. Tokyo Univ. of Science, Shinjuku (Japan). Dept.of Applied Chemistry
  3. Univ. of Bath, Claverton Down (United Kingdom). Dept. of Chemistry
  4. Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS). X-ray Science Division
  5. Univ. de Caen, Caen (France). Lab. CRISMAT, ENSICAEN
  6. Sorbonne Univ., Paris (France). Physico-chimie des électrolytes et nano-systèmes interfaciaux; Réseau sur le Stockage Electrochimique de l'Energie (RS2E), Amiens (France)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Scientific User Facilities Division
OSTI Identifier:
1484019
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Inorganic Chemistry Frontiers (Online)
Additional Journal Information:
Journal Name: Inorganic Chemistry Frontiers (Online); Journal Volume: 5; Journal Issue: 5; Journal ID: ISSN 2052-1553
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Li, Wei, Fukunishi, Mika, Morgan, Benjamin J., Borkiewicz, Olaf. J., Pralong, Valérie, Maignan, Antoine, Groult, Henri, Komaba, Shinichi, and Dambournet, Damien. The electrochemical storage mechanism in oxy-hydroxyfluorinated anatase for sodium-ion batteries. United States: N. p., 2018. Web. doi:10.1039/c8qi00185e.
Li, Wei, Fukunishi, Mika, Morgan, Benjamin J., Borkiewicz, Olaf. J., Pralong, Valérie, Maignan, Antoine, Groult, Henri, Komaba, Shinichi, & Dambournet, Damien. The electrochemical storage mechanism in oxy-hydroxyfluorinated anatase for sodium-ion batteries. United States. doi:10.1039/c8qi00185e.
Li, Wei, Fukunishi, Mika, Morgan, Benjamin J., Borkiewicz, Olaf. J., Pralong, Valérie, Maignan, Antoine, Groult, Henri, Komaba, Shinichi, and Dambournet, Damien. Thu . "The electrochemical storage mechanism in oxy-hydroxyfluorinated anatase for sodium-ion batteries". United States. doi:10.1039/c8qi00185e. https://www.osti.gov/servlets/purl/1484019.
@article{osti_1484019,
title = {The electrochemical storage mechanism in oxy-hydroxyfluorinated anatase for sodium-ion batteries},
author = {Li, Wei and Fukunishi, Mika and Morgan, Benjamin J. and Borkiewicz, Olaf. J. and Pralong, Valérie and Maignan, Antoine and Groult, Henri and Komaba, Shinichi and Dambournet, Damien},
abstractNote = {Replacing lithium ions with sodium ions as the charge carriers in rechargeable batteries can induce noticeable differences in the electrochemical storage mechanisms of electrode materials. Many material parameters, such as particle size, morphology, and the presence of defects, are known to further affect the storage mechanism. Here, we report an investigation of how the introduction of titanium vacancies into anatase TiO2 affects the sodium storage mechanism. From pair distribution function analysis, we observe that sodium ions are inserted into titanium vacancies at the early stage of the discharge process. This is supported by density functional theory calculations, which predict that sodium insertion is more favourable at vacancies than at interstitial sites. Our calculations also show that the intercalation voltage is sensitive to the anion coordination environment of the vacancy. Sodiation to higher concentrations induces a phase transition toward a disordered rhombohedral structure, similar to that observed in defect-free TiO2. Finally, we find that the X-ray diffraction pattern of the rhombohedral phase drastically changes depending on the composition and degree of disorder, providing further comprehension on the sodium storage mechanism of anatase.},
doi = {10.1039/c8qi00185e},
journal = {Inorganic Chemistry Frontiers (Online)},
number = 5,
volume = 5,
place = {United States},
year = {2018},
month = {3}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Room-Temperature Synthesis of High Surface Area Anatase TiO 2 Exhibiting a Complete Lithium Insertion Solid Solution
journal, August 2013

  • Patra, Snehangshu; Davoisne, Carine; Bruyère, Stéphanie
  • Particle & Particle Systems Characterization, Vol. 30, Issue 12
  • DOI: 10.1002/ppsc.201300178

On the electrochemical encounter between sodium and mesoporous anatase TiO 2 as a Na-ion electrode
journal, January 2016

  • Louvain, N.; Henry, A.; Daenens, L.
  • CrystEngComm, Vol. 18, Issue 23
  • DOI: 10.1039/C5CE02598B

A new sodium storage mechanism of TiO 2 for sodium ion batteries
journal, January 2016

  • Yan, Dong; Pan, Likun
  • Inorganic Chemistry Frontiers, Vol. 3, Issue 4
  • DOI: 10.1039/C5QI00226E

Rationalization of Intercalation Potential and Redox Mechanism for A 2 Ti 3 O 7 (A = Li, Na)
journal, December 2013

  • Rousse, Gwenaelle; Arroyo-de Dompablo, M. Elena; Senguttuvan, Premkumar
  • Chemistry of Materials, Vol. 25, Issue 24
  • DOI: 10.1021/cm4032336

Rapid-acquisition pair distribution function (RA-PDF) analysis
journal, November 2003

  • Chupas, Peter J.; Qiu, Xiangyun; Hanson, Jonathan C.
  • Journal of Applied Crystallography, Vol. 36, Issue 6, p. 1342-1347
  • DOI: 10.1107/S0021889803017564

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


NaTiO 2 : a layered anode material for sodium-ion batteries
journal, January 2015

  • Wu, Di; Li, Xin; Xu, Bo
  • Energy & Environmental Science, Vol. 8, Issue 1
  • DOI: 10.1039/C4EE03045A

The electronic structure and ionic diffusion of nanoscale LiTiO2 anatase
journal, January 2009

  • Borghols, W. J. H.; Lützenkirchen-Hecht, D.; Haake, U.
  • Physical Chemistry Chemical Physics, Vol. 11, Issue 27
  • DOI: 10.1039/b823142g

GGA + U description of lithium intercalation into anatase TiO 2
journal, October 2010


Synthesis, Structure, and Magnetic Properties of NaTiO 2
journal, January 1998

  • Clarke, S. J.; Fowkes, A. J.; Harrison, A.
  • Chemistry of Materials, Vol. 10, Issue 1
  • DOI: 10.1021/cm970538c

From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Extraordinary Performance of Carbon-Coated Anatase TiO 2 as Sodium-Ion Anode
journal, December 2015

  • Tahir, Muhammad Nawaz; Oschmann, Bernd; Buchholz, Daniel
  • Advanced Energy Materials, Vol. 6, Issue 4
  • DOI: 10.1002/aenm.201501489

Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
journal, January 1998

  • Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.
  • Physical Review B, Vol. 57, Issue 3, p. 1505-1509
  • DOI: 10.1103/PhysRevB.57.1505

Large Impact of Particle Size on Insertion Reactions. A Case for Anatase Li x TiO 2
journal, April 2007

  • Wagemaker, Marnix; Borghols, Wouter J. H.; Mulder, Fokko M.
  • Journal of the American Chemical Society, Vol. 129, Issue 14
  • DOI: 10.1021/ja067733p

Role of Lithium Ordering in the Li x TiO 2 Anatase → Titanate Phase Transition
journal, June 2011

  • Morgan, Benjamin J.; Watson, Graeme W.
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 14
  • DOI: 10.1021/jz200718e

Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2
journal, September 2017

  • Koketsu, Toshinari; Ma, Jiwei; Morgan, Benjamin J.
  • Nature Materials, Vol. 16, Issue 11
  • DOI: 10.1038/nmat4976

Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces
journal, April 2008


Unfolding the Mechanism of Sodium Insertion in Anatase TiO 2 Nanoparticles
journal, August 2014

  • Wu, Liming; Bresser, Dominic; Buchholz, Daniel
  • Advanced Energy Materials, Vol. 5, Issue 2
  • DOI: 10.1002/aenm.201401142

Surface states on NiO (100) and the origin of the contrast reversal in atomically resolved scanning tunneling microscope images
journal, August 1997

  • Dudarev, S. L.; Liechtenstein, A. I.; Castell, M. R.
  • Physical Review B, Vol. 56, Issue 8
  • DOI: 10.1103/PhysRevB.56.4900

Dft Data Analysis: Intercalation Of X=(Li, Na, Mg, Ca, Al) Into (F/Oh)-Substituted Anatase Tio2
software, March 2018


Anatase TiO2 nanoparticles for high power sodium-ion anodes
journal, April 2014


Sodium carboxymethyl cellulose as a potential binder for hard-carbon negative electrodes in sodium-ion batteries
journal, July 2014


Self-Supported Nanotube Arrays of Sulfur-Doped TiO 2 Enabling Ultrastable and Robust Sodium Storage
journal, January 2016


A Reversible Phase Transition for Sodium Insertion in Anatase TiO 2
journal, February 2017


PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data
journal, July 2004

  • Qiu, Xiangyun; Thompson, Jeroen W.; Billinge, Simon J. L.
  • Journal of Applied Crystallography, Vol. 37, Issue 4, p. 678-678
  • DOI: 10.1107/S0021889804011744

A new sodiation–desodiation mechanism of the titania-based negative electrode for sodium-ion batteries
journal, January 2016

  • Ding, Changsheng; Nohira, Toshiyuki; Hagiwara, Rika
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 44
  • DOI: 10.1039/C6CP05944A

Impact of Particle Size on the Non-Equilibrium Phase Transition of Lithium-Inserted Anatase TiO 2
journal, February 2014

  • Shen, Kun; Chen, Hao; Klaver, Frits
  • Chemistry of Materials, Vol. 26, Issue 4
  • DOI: 10.1021/cm4037346

A study of the Na x TiO2 system by electrochemical deintercalation
journal, January 1983

  • Maazaz, A.; Delmas, C.; Hagenmuller, P.
  • Journal of Inclusion Phenomena, Vol. 1, Issue 1
  • DOI: 10.1007/BF00658014

Growth and structure analysis of nonstoichiometric single crystalNaxTiO2 (x ∼ 0.5)with the α-NaFeO2-type structure
journal, March 1990


POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns
journal, June 1996


Is lithium the new gold?
journal, June 2010


A cost and resource analysis of sodium-ion batteries
journal, March 2018


Titanium(III) Sulfate as New Negative Electrode for Sodium-Ion Batteries
journal, May 2013

  • Senguttuvan, P.; Rousse, G.; Vezin, H.
  • Chemistry of Materials, Vol. 25, Issue 12
  • DOI: 10.1021/cm401181b

Ultrafast sodium storage in anatase TiO2 nanoparticles embedded on carbon nanotubes
journal, September 2015


Shape-Controlled TiO 2 Nanocrystals for Na-Ion Battery Electrodes: The Role of Different Exposed Crystal Facets on the Electrochemical Properties
journal, January 2017


Applications of an amorphous silicon-based area detector for high-resolution, high-sensitivity and fast time-resolved pair distribution function measurements
journal, May 2007

  • Chupas, Peter J.; Chapman, Karena W.; Lee, Peter L.
  • Journal of Applied Crystallography, Vol. 40, Issue 3
  • DOI: 10.1107/S0021889807007856

High Substitution Rate in TiO 2 Anatase Nanoparticles with Cationic Vacancies for Fast Lithium Storage
journal, July 2015


Two-dimensional detector software: From real detector to idealised image or two-theta scan
journal, January 1996

  • Hammersley, A. P.; Svensson, S. O.; Hanfland, M.
  • High Pressure Research, Vol. 14, Issue 4-6, p. 235-248
  • DOI: 10.1080/08957959608201408

Research Development on Sodium-Ion Batteries
journal, October 2014

  • Yabuuchi, Naoaki; Kubota, Kei; Dahbi, Mouad
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500192f

    Works referencing / citing this record:

    Dft Data Analysis: Intercalation Of X=(Li, Na, Mg, Ca, Al) Into (F/Oh)-Substituted Anatase Tio2
    software, March 2018


    Self-Supported Nanotube Arrays of Sulfur-Doped TiO 2 Enabling Ultrastable and Robust Sodium Storage
    journal, January 2016


    Unfolding the Mechanism of Sodium Insertion in Anatase TiO 2 Nanoparticles
    journal, August 2014

    • Wu, Liming; Bresser, Dominic; Buchholz, Daniel
    • Advanced Energy Materials, Vol. 5, Issue 2
    • DOI: 10.1002/aenm.201401142

    Extraordinary Performance of Carbon-Coated Anatase TiO 2 as Sodium-Ion Anode
    journal, December 2015

    • Tahir, Muhammad Nawaz; Oschmann, Bernd; Buchholz, Daniel
    • Advanced Energy Materials, Vol. 6, Issue 4
    • DOI: 10.1002/aenm.201501489

    Room-Temperature Synthesis of High Surface Area Anatase TiO 2 Exhibiting a Complete Lithium Insertion Solid Solution
    journal, August 2013

    • Patra, Snehangshu; Davoisne, Carine; Bruyère, Stéphanie
    • Particle & Particle Systems Characterization, Vol. 30, Issue 12
    • DOI: 10.1002/ppsc.201300178

    Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
    journal, July 1996


    Sodium carboxymethyl cellulose as a potential binder for hard-carbon negative electrodes in sodium-ion batteries
    journal, July 2014


    Anatase TiO2 nanoparticles for high power sodium-ion anodes
    journal, April 2014


    Ultrafast sodium storage in anatase TiO2 nanoparticles embedded on carbon nanotubes
    journal, September 2015


    High Substitution Rate in TiO 2 Anatase Nanoparticles with Cationic Vacancies for Fast Lithium Storage
    journal, July 2015


    A Reversible Phase Transition for Sodium Insertion in Anatase TiO 2
    journal, February 2017


    Shape-Controlled TiO 2 Nanocrystals for Na-Ion Battery Electrodes: The Role of Different Exposed Crystal Facets on the Electrochemical Properties
    journal, January 2017


    Titanium(III) Sulfate as New Negative Electrode for Sodium-Ion Batteries
    journal, May 2013

    • Senguttuvan, P.; Rousse, G.; Vezin, H.
    • Chemistry of Materials, Vol. 25, Issue 12
    • DOI: 10.1021/cm401181b

    Rationalization of Intercalation Potential and Redox Mechanism for A 2 Ti 3 O 7 (A = Li, Na)
    journal, December 2013

    • Rousse, Gwenaelle; Arroyo-de Dompablo, M. Elena; Senguttuvan, Premkumar
    • Chemistry of Materials, Vol. 25, Issue 24
    • DOI: 10.1021/cm4032336

    Impact of Particle Size on the Non-Equilibrium Phase Transition of Lithium-Inserted Anatase TiO 2
    journal, February 2014

    • Shen, Kun; Chen, Hao; Klaver, Frits
    • Chemistry of Materials, Vol. 26, Issue 4
    • DOI: 10.1021/cm4037346

    Synthesis, Structure, and Magnetic Properties of NaTiO 2
    journal, January 1998

    • Clarke, S. J.; Fowkes, A. J.; Harrison, A.
    • Chemistry of Materials, Vol. 10, Issue 1
    • DOI: 10.1021/cm970538c

    Research Development on Sodium-Ion Batteries
    journal, October 2014

    • Yabuuchi, Naoaki; Kubota, Kei; Dahbi, Mouad
    • Chemical Reviews, Vol. 114, Issue 23
    • DOI: 10.1021/cr500192f

    Large Impact of Particle Size on Insertion Reactions. A Case for Anatase Li x TiO 2
    journal, April 2007

    • Wagemaker, Marnix; Borghols, Wouter J. H.; Mulder, Fokko M.
    • Journal of the American Chemical Society, Vol. 129, Issue 14
    • DOI: 10.1021/ja067733p

    Role of Lithium Ordering in the Li x TiO 2 Anatase → Titanate Phase Transition
    journal, June 2011

    • Morgan, Benjamin J.; Watson, Graeme W.
    • The Journal of Physical Chemistry Letters, Vol. 2, Issue 14
    • DOI: 10.1021/jz200718e

    A cost and resource analysis of sodium-ion batteries
    journal, March 2018


    Is lithium the new gold?
    journal, June 2010


    Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2
    journal, September 2017

    • Koketsu, Toshinari; Ma, Jiwei; Morgan, Benjamin J.
    • Nature Materials, Vol. 16, Issue 11
    • DOI: 10.1038/nmat4976

    The electronic structure and ionic diffusion of nanoscale LiTiO2 anatase
    journal, January 2009

    • Borghols, W. J. H.; Lützenkirchen-Hecht, D.; Haake, U.
    • Physical Chemistry Chemical Physics, Vol. 11, Issue 27
    • DOI: 10.1039/b823142g

    Controlled hydroxy-fluorination reaction of anatase to promote Mg 2+ mobility in rechargeable magnesium batteries
    journal, January 2018

    • Ma, Jiwei; Koketsu, Toshinari; Morgan, Benjamin. J.
    • Chemical Communications, Vol. 54, Issue 72
    • DOI: 10.1039/c8cc04136a

    Two-dimensional detector software: From real detector to idealised image or two-theta scan
    journal, January 1996

    • Hammersley, A. P.; Svensson, S. O.; Hanfland, M.
    • High Pressure Research, Vol. 14, Issue 4-6, p. 235-248
    • DOI: 10.1080/08957959608201408

    Controlled hydroxy-fluorination reaction of anatase to promote Mg 2+ mobility in rechargeable magnesium batteries
    journal, January 2018

    • Ma, Jiwei; Koketsu, Toshinari; Morgan, Benjamin. J.
    • Chemical Communications, Vol. 54, Issue 72
    • DOI: 10.1039/c8cc04136a