DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Pathways of Growth of CdSe Nanocrystals from Nucleant (CdSe) 34 Clusters

Abstract

The first steps in the growth of quantum platelets from the wurtzite-type (CdSe)34 clusters are simulated using density functional theory with the generalized gradient approximation. The nucleant (CdSe)34 cluster has been chosen for simulations because it has experimentally been discovered to be a magic-size nucleant for the low-temperature growth of CdSe quantum platelets. According to the results of our calculations, the growth is anisotropic and favors the (0001) direction, which is consistent with the experimental findings. We discover that growth in other directions lowers the symmetry of the resulting clusters and that the asymmetrical positioning of rhombic defects causes the growing platelet to bend due to the surface strain, which appears to be the limiting factor of growth. An alternative pathway to quantum platelet growth could proceed via the decomposition of (CdSe)34 to (CdSe)13 in electron-donating media, which was found to be thermodynamically favorable. Side product (CdSe)21 generated in this process is capable of growing via hexagonal stacking as well as propagating as a nanotube.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3]
  1. Virginia Commonwealth Univ., Richmond, VA (United States)
  2. Louisiana Tech Univ., Ruston, LA (United States)
  3. Florida A & M University, Tallahassee, FL (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
Sponsoring Org.:
USDOE Office of Science (SC); National Science Foundation (NSF)
OSTI Identifier:
1483796
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 122; Journal Issue: 5; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Gutsev, Lavrenty G., Ramachandran, Bala R., and Gutsev, Gennady L. Pathways of Growth of CdSe Nanocrystals from Nucleant (CdSe) 34 Clusters. United States: N. p., 2018. Web. doi:10.1021/acs.jpcc.7b12716.
Gutsev, Lavrenty G., Ramachandran, Bala R., & Gutsev, Gennady L. Pathways of Growth of CdSe Nanocrystals from Nucleant (CdSe) 34 Clusters. United States. https://doi.org/10.1021/acs.jpcc.7b12716
Gutsev, Lavrenty G., Ramachandran, Bala R., and Gutsev, Gennady L. Tue . "Pathways of Growth of CdSe Nanocrystals from Nucleant (CdSe) 34 Clusters". United States. https://doi.org/10.1021/acs.jpcc.7b12716. https://www.osti.gov/servlets/purl/1483796.
@article{osti_1483796,
title = {Pathways of Growth of CdSe Nanocrystals from Nucleant (CdSe) 34 Clusters},
author = {Gutsev, Lavrenty G. and Ramachandran, Bala R. and Gutsev, Gennady L.},
abstractNote = {The first steps in the growth of quantum platelets from the wurtzite-type (CdSe)34 clusters are simulated using density functional theory with the generalized gradient approximation. The nucleant (CdSe)34 cluster has been chosen for simulations because it has experimentally been discovered to be a magic-size nucleant for the low-temperature growth of CdSe quantum platelets. According to the results of our calculations, the growth is anisotropic and favors the (0001) direction, which is consistent with the experimental findings. We discover that growth in other directions lowers the symmetry of the resulting clusters and that the asymmetrical positioning of rhombic defects causes the growing platelet to bend due to the surface strain, which appears to be the limiting factor of growth. An alternative pathway to quantum platelet growth could proceed via the decomposition of (CdSe)34 to (CdSe)13 in electron-donating media, which was found to be thermodynamically favorable. Side product (CdSe)21 generated in this process is capable of growing via hexagonal stacking as well as propagating as a nanotube.},
doi = {10.1021/acs.jpcc.7b12716},
journal = {Journal of Physical Chemistry. C},
number = 5,
volume = 122,
place = {United States},
year = {2018},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Figures / Tables:

Table 1 Table 1: Comparison of the Results of Computations on the Separation of 1Σ+ and 3$Π$ States of the CdSe Monomer Performed with Basis sets of Increasing Size.

Save / Share:

Works referenced in this record:

Performance of light-emitting-diode based on quantum dots
journal, January 2013

  • Kim, Sungwoo; Im, Sang Hyuk; Kim, Sang-Wook
  • Nanoscale, Vol. 5, Issue 12
  • DOI: 10.1039/c3nr00496a

Hybrid Nanorod-Polymer Solar Cells
journal, March 2002

  • Huynh, W. U.; Dittmer, Janke J.; Alivisatos, A. Paul
  • Science, Vol. 295, Issue 5564, p. 2425-2427
  • DOI: 10.1126/science.1069156

Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO 2 Films
journal, February 2006

  • Robel, István; Subramanian, Vaidyanathan; Kuno, Masaru
  • Journal of the American Chemical Society, Vol. 128, Issue 7
  • DOI: 10.1021/ja056494n

Colloidal Quantum Dot Solar Cells
journal, June 2015


Electroluminescence from single monolayers of nanocrystals in molecular organic devices
journal, December 2002

  • Coe, Seth; Woo, Wing-Keung; Bawendi, Moungi
  • Nature, Vol. 420, Issue 6917
  • DOI: 10.1038/nature01217

Quantum dots: heralding a brighter future for clinical diagnostics
journal, November 2012

  • Samir, Tamer M.; Mansour, Mai MH; Kazmierczak, Steven C.
  • Nanomedicine, Vol. 7, Issue 11
  • DOI: 10.2217/nnm.12.147

A device architecture for computing with quantum dots
journal, April 1997

  • Lent, C. S.; Tougaw, P. D.
  • Proceedings of the IEEE, Vol. 85, Issue 4
  • DOI: 10.1109/5.573740

Ultrafast All-Optical Switching with Magnetic Resonances in Nonlinear Dielectric Nanostructures
journal, September 2015

  • Shcherbakov, Maxim R.; Vabishchevich, Polina P.; Shorokhov, Alexander S.
  • Nano Letters, Vol. 15, Issue 10
  • DOI: 10.1021/acs.nanolett.5b02989

Self-Assembly of CdSe−ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein
journal, December 2000

  • Mattoussi, Hedi; Mauro, J. Matthew; Goldman, Ellen R.
  • Journal of the American Chemical Society, Vol. 122, Issue 49, p. 12142-12150
  • DOI: 10.1021/ja002535y

Semiconductor Nanocrystals: Structure, Properties, and Band Gap Engineering
journal, February 2010

  • Smith, Andrew M.; Nie, Shuming
  • Accounts of Chemical Research, Vol. 43, Issue 2
  • DOI: 10.1021/ar9001069

Fine control of the growth and optical properties of CdSe quantum dots by varying the amount of stearic acid in a liquid paraffin matrix
journal, June 2008

  • Yordanov, Georgi G.; Yoshimura, Hideyuki; Dushkin, Ceco D.
  • Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 322, Issue 1-3
  • DOI: 10.1016/j.colsurfa.2008.03.002

Surface Chemistry of Semiconducting Quantum Dots: Theoretical Perspectives
journal, September 2016

  • Kilina, Svetlana V.; Tamukong, Patrick K.; Kilin, Dmitri S.
  • Accounts of Chemical Research, Vol. 49, Issue 10
  • DOI: 10.1021/acs.accounts.6b00196

Ultra-stable nanoparticles of CdSe revealed from mass spectrometry
journal, January 2004

  • Kasuya, Atsuo; Sivamohan, Rajaratnam; Barnakov, Yurii A.
  • Nature Materials, Vol. 3, Issue 2
  • DOI: 10.1038/nmat1056

Effect of Surface Ligands on Optical and Electronic Spectra of Semiconductor Nanoclusters
journal, June 2009

  • Kilina, Svetlana; Ivanov, Sergei; Tretiak, Sergei
  • Journal of the American Chemical Society, Vol. 131, Issue 22
  • DOI: 10.1021/ja9005749

Density Functional Study on the Morphology and Photoabsorption of CdSe Nanoclusters
journal, August 2011

  • Del Ben, Mauro; Havenith, Remco W. A.; Broer, Ria
  • The Journal of Physical Chemistry C, Vol. 115, Issue 34
  • DOI: 10.1021/jp203686a

Main-Group-Semiconductor Cluster Molecules as Synthetic Intermediates to Nanostructures
journal, March 2017


Magic-Size II–VI Nanoclusters as Synthons for Flat Colloidal Nanocrystals
journal, November 2014

  • Wang, Yuanyuan; Zhou, Yang; Zhang, Ying
  • Inorganic Chemistry, Vol. 54, Issue 3
  • DOI: 10.1021/ic502637q

Ligand Exchange and the Stoichiometry of Metal Chalcogenide Nanocrystals: Spectroscopic Observation of Facile Metal-Carboxylate Displacement and Binding
journal, November 2013

  • Anderson, Nicholas C.; Hendricks, Mark P.; Choi, Joshua J.
  • Journal of the American Chemical Society, Vol. 135, Issue 49, p. 18536-18548
  • DOI: 10.1021/ja4086758

Understanding Structural and Optical Properties of Nanoscale CdSe Magic-Size Quantum Dots: Insight from Computational Prediction
journal, September 2010

  • Nguyen, Kiet A.; Day, Paul N.; Pachter, Ruth
  • The Journal of Physical Chemistry C, Vol. 114, Issue 39
  • DOI: 10.1021/jp103763d

Evolution of Properties in Prolate (GaAs) n Clusters
journal, December 2010

  • Karamanis, Panaghiotis; Pouchan, Claude; Weatherford, Charles A.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 1
  • DOI: 10.1021/jp107720m

Density-functional exchange-energy approximation with correct asymptotic behavior
journal, September 1988


Accurate and simple analytic representation of the electron-gas correlation energy
journal, June 1992


Energy-consistent pseudopotentials for group 11 and 12 atoms: adjustment to multi-configuration Dirac–Hartree–Fock data
journal, April 2005


Non-quantum-confinement optics in (CdS)n clusters
journal, March 2010


Spectral signatures of semiconductor clusters: (CdSe)16 isomers
journal, September 2015


Computational Prediction of Structures and Optical Excitations for Nanoscale Ultrasmall ZnS and CdSe Clusters
journal, July 2013

  • Nguyen, Kiet A.; Pachter, Ruth; Day, Paul N.
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 8
  • DOI: 10.1021/ct4001944

Structure and magnetic properties of (CdSe)9 doped with Mn atoms
journal, February 2014


The group 12 metal chalcogenides: an accurate multireference configuration interaction and coupled cluster study
journal, May 2007


Density‐functional thermochemistry. III. The role of exact exchange
journal, April 1993

  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 98, Issue 7, p. 5648-5652
  • DOI: 10.1063/1.464913

Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
journal, January 1988


A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP)
journal, July 2004

  • Yanai, Takeshi; Tew, David P.; Handy, Nicholas C.
  • Chemical Physics Letters, Vol. 393, Issue 1-3, p. 51-57
  • DOI: 10.1016/j.cplett.2004.06.011

Toward reliable density functional methods without adjustable parameters: The PBE0 model
journal, April 1999

  • Adamo, Carlo; Barone, Vincenzo
  • The Journal of Chemical Physics, Vol. 110, Issue 13
  • DOI: 10.1063/1.478522

Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections
journal, January 2008

  • Chai, Jeng-Da; Head-Gordon, Martin
  • Physical Chemistry Chemical Physics, Vol. 10, Issue 44
  • DOI: 10.1039/b810189b

Generalized gradient approximation for the exchange-correlation hole of a many-electron system
journal, December 1996


An intrinsic growth instability in isotropic materials leads to quasi-two-dimensional nanoplatelets
journal, April 2017

  • Riedinger, Andreas; Ott, Florian D.; Mule, Aniket
  • Nature Materials, Vol. 16, Issue 7
  • DOI: 10.1038/nmat4889

Ostwald’s Rule of Stages and Its Role in CdSe Quantum Dot Crystallization
journal, October 2012

  • Washington, Aaron L.; Foley, Megan E.; Cheong, Soshan
  • Journal of the American Chemical Society, Vol. 134, Issue 41
  • DOI: 10.1021/ja302964e

Quantum chemistry of quantum dots: Effects of ligands and oxidation
journal, July 2009

  • Inerbaev, Talgat M.; Masunov, Artëm E.; Khondaker, Saiful I.
  • The Journal of Chemical Physics, Vol. 131, Issue 4
  • DOI: 10.1063/1.3135193

Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory
journal, July 1996


Determination of the Exciton Binding Energy in CdSe Quantum Dots
journal, January 2009

  • Meulenberg, Robert W.; Lee, Jonathan R. I.; Wolcott, Abraham
  • ACS Nano, Vol. 3, Issue 2
  • DOI: 10.1021/nn8006916

Negatively charged GaAs clusters
journal, July 2009


Works referencing / citing this record: