skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Phase transition lowering in dynamically compressed silicon

Abstract

Silicon, being one of the most abundant elements in nature, attracts wide-ranging scientific and technological interest. Specifically, in its elemental form, crystals of remarkable purity can be produced. One may assume that this would lead to silicon being well understood, and indeed, this is the case for many ambient properties, as well as for higher-pressure behaviour under quasi-static loading. However, despite many decades of study, a detailed understanding of the response of silicon to rapid compression—such as that experienced under shock impact—remains elusive. Here, we combine a novel free-electron laser-based X-ray diffraction geometry with laser-driven compression to elucidate the importance of shear generated during shock compression on the occurrence of phase transitions. We observe lowering of the hydrostatic phase boundary in elemental silicon, an ideal model system for investigating high-strength materials, analogous to planetary constituents. Furthermore, we unambiguously determine the onset of melting above 14 GPa, previously ascribed to a solid–solid phase transition, undetectable in the now conventional shocked diffraction geometry; transitions to the liquid state are expected to be ubiquitous in all systems at sufficiently high pressures and temperatures.

Authors:
ORCiD logo [1];  [2];  [3];  [4]; ORCiD logo [2];  [5];  [4]; ORCiD logo [3];  [4];  [6];  [6];  [3];  [7];  [8];  [7];  [4];  [3];  [9];  [10];  [11]
  1. Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); SLAC National Accelerator Lab., Menlo Park, CA (United States); European XFEL GmbH, Hamburg (Germany)
  2. IMPMC, UPMC, MNHN, IRD, Paris (France)
  3. Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
  4. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  5. Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); European XFEL GmbH, Hamburg (Germany)
  6. Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany)
  7. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  8. Rutherford Appleton Lab., Didcot (United Kingdom)
  9. European XFEL GmbH, Schenefeld (Germany)
  10. Univ. of Oxford, Oxford (United Kingdom)
  11. Univ. of York, York (United Kingdom)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1483786
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Nature Physics
Additional Journal Information:
Journal Volume: 15; Journal ID: ISSN 1745-2473
Publisher:
Nature Publishing Group (NPG)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

McBride, E. E., Krygier, A., Ehnes, A., Galtier, E., Harmand, M., Konôpková, Z., Lee, H. J., Liermann, H. -P., Nagler, B., Pelka, A., Rödel, M., Schropp, A., Smith, R. F., Spindloe, C., Swift, D., Tavella, F., Toleikis, S., Tschentscher, T., Wark, J. S., and Higginbotham, A. Phase transition lowering in dynamically compressed silicon. United States: N. p., 2018. Web. https://doi.org/10.1038/s41567-018-0290-x.
McBride, E. E., Krygier, A., Ehnes, A., Galtier, E., Harmand, M., Konôpková, Z., Lee, H. J., Liermann, H. -P., Nagler, B., Pelka, A., Rödel, M., Schropp, A., Smith, R. F., Spindloe, C., Swift, D., Tavella, F., Toleikis, S., Tschentscher, T., Wark, J. S., & Higginbotham, A. Phase transition lowering in dynamically compressed silicon. United States. https://doi.org/10.1038/s41567-018-0290-x
McBride, E. E., Krygier, A., Ehnes, A., Galtier, E., Harmand, M., Konôpková, Z., Lee, H. J., Liermann, H. -P., Nagler, B., Pelka, A., Rödel, M., Schropp, A., Smith, R. F., Spindloe, C., Swift, D., Tavella, F., Toleikis, S., Tschentscher, T., Wark, J. S., and Higginbotham, A. Mon . "Phase transition lowering in dynamically compressed silicon". United States. https://doi.org/10.1038/s41567-018-0290-x. https://www.osti.gov/servlets/purl/1483786.
@article{osti_1483786,
title = {Phase transition lowering in dynamically compressed silicon},
author = {McBride, E. E. and Krygier, A. and Ehnes, A. and Galtier, E. and Harmand, M. and Konôpková, Z. and Lee, H. J. and Liermann, H. -P. and Nagler, B. and Pelka, A. and Rödel, M. and Schropp, A. and Smith, R. F. and Spindloe, C. and Swift, D. and Tavella, F. and Toleikis, S. and Tschentscher, T. and Wark, J. S. and Higginbotham, A.},
abstractNote = {Silicon, being one of the most abundant elements in nature, attracts wide-ranging scientific and technological interest. Specifically, in its elemental form, crystals of remarkable purity can be produced. One may assume that this would lead to silicon being well understood, and indeed, this is the case for many ambient properties, as well as for higher-pressure behaviour under quasi-static loading. However, despite many decades of study, a detailed understanding of the response of silicon to rapid compression—such as that experienced under shock impact—remains elusive. Here, we combine a novel free-electron laser-based X-ray diffraction geometry with laser-driven compression to elucidate the importance of shear generated during shock compression on the occurrence of phase transitions. We observe lowering of the hydrostatic phase boundary in elemental silicon, an ideal model system for investigating high-strength materials, analogous to planetary constituents. Furthermore, we unambiguously determine the onset of melting above 14 GPa, previously ascribed to a solid–solid phase transition, undetectable in the now conventional shocked diffraction geometry; transitions to the liquid state are expected to be ubiquitous in all systems at sufficiently high pressures and temperatures.},
doi = {10.1038/s41567-018-0290-x},
journal = {Nature Physics},
number = ,
volume = 15,
place = {United States},
year = {2018},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: Experimental configuration and data examples: a the transverse configuration whereby the compression laser was perpendicular to the X-ray beam. b Velocimetry data (VISAR) lineouts showing free surface velocity (Umore » $FS$). Laser intensity increases to the right. Dashed lines indicate the onset of the 2nd and 3rd wave. c Azimuthally integrated 1D diffraction patterns as a function of increasing laser intensity and hence increasing pressure in both the transverse: (i), (ii), (iv), (v), (ix) and collinear (iii), (vi), (vii), (viii) configurations. Peaks marked with the * symbol belong to the compressed cubic diamond phase. Peaks marked with the † symbol cannot be described by the cubic diamond, $β$-tin, $I$$mma$, or simple hexagonal phases.« less

Save / Share:

Works referenced in this record:

Axial Yield Strengths and Two Successive Phase Transition Stresses for Crystalline Silicon
journal, April 1971

  • Gust, W. H.; Royce, E. B.
  • Journal of Applied Physics, Vol. 42, Issue 5
  • DOI: 10.1063/1.1660465

X-ray diffraction of molybdenum under shock compression to 450 GPa
journal, November 2015


Time-dependence of the alpha to epsilon phase transformation in iron
journal, December 2013

  • Smith, R. F.; Eggert, J. H.; Swift, D. C.
  • Journal of Applied Physics, Vol. 114, Issue 22
  • DOI: 10.1063/1.4839655

Polymorphism of Iron at High Pressure
journal, March 1956

  • Bancroft, Dennison; Peterson, Eric L.; Minshall, Stanley
  • Journal of Applied Physics, Vol. 27, Issue 3
  • DOI: 10.1063/1.1722359

hcp to fcc transition in silicon at 78 GPa and studies to 100 GPa
journal, February 1987


Molecular dynamics simulations of shock-compressed single-crystal silicon
journal, February 2014


New high-pressure phase of Si
journal, April 1993


Real-Time Examination of Atomistic Mechanisms during Shock-Induced Structural Transformation in Silicon
journal, July 2016


Powder diffraction from solids in the terapascal regime
journal, November 2012

  • Rygg, J. R.; Eggert, J. H.; Lazicki, A. E.
  • Review of Scientific Instruments, Vol. 83, Issue 11
  • DOI: 10.1063/1.4766464

Pressure-Induced Structural Change of Liquid Silicon
journal, June 2002


Pressure and shear-induced amorphization of silicon
journal, December 2015


Structural phase transitions in Si and Ge under pressures up to 50 GPa
journal, June 1984


High-pressure x-ray scattering and computer simulation studies of density-induced polyamorphism in silicon
journal, June 2007


Melting temperature of diamond at ultrahigh pressure
journal, November 2009

  • Eggert, J. H.; Hicks, D. G.; Celliers, P. M.
  • Nature Physics, Vol. 6, Issue 1
  • DOI: 10.1038/nphys1438

Nanosecond formation of diamond and lonsdaleite by shock compression of graphite
journal, March 2016

  • Kraus, D.; Ravasio, A.; Gauthier, M.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10970

Two New Forms of Silicon
journal, January 1963


X-Ray Diffraction of Solid Tin to 1.2 TPa
journal, August 2015


Structure and properties of silicon XII: A complex tetrahedrally bonded phase
journal, August 1995


Ultrabright X-ray laser scattering for dynamic warm dense matter physics
journal, March 2015


Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2
journal, September 2015

  • Gleason, A. E.; Bolme, C. A.; Lee, H. J.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9191

Inelastic response of silicon to shock compression
journal, April 2016

  • Higginbotham, A.; Stubley, P. G.; Comley, A. J.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep24211

Electrical measurements in silicon under shock‐wave compression
journal, December 1972

  • Coleburn, N. L.; Forbes, J. W.; Jones, H. D.
  • Journal of Applied Physics, Vol. 43, Issue 12
  • DOI: 10.1063/1.1661061

Theoretical study of high-pressure orthorhombic silicon
journal, December 1993


Reduction of Shear Strength and Phase-Transition in Shock-Loaded Silicon
journal, June 1982

  • Goto, Tsuneaki; Sato, Toshiyuki; Syono, Yasuhiko
  • Japanese Journal of Applied Physics, Vol. 21, Issue Part 2, No. 6
  • DOI: 10.1143/JJAP.21.L369

X-ray absorption spectroscopy of iron at multimegabar pressures in laser shock experiments
journal, July 2015


Ab initio calculation of the shock Hugoniot of bulk silicon
journal, March 2016


Static compression of silicon in the [100] and in the [111] directions
journal, February 1980

  • Gupta, Mool C.; Ruoff, Arthur L.
  • Journal of Applied Physics, Vol. 51, Issue 2
  • DOI: 10.1063/1.327714

Pressure dependence of the Imma phase of silicon
journal, July 1994


Crystal Structure of the High-Pressure Phase Silicon VI
journal, February 1999


The Matter in Extreme Conditions instrument at the Linac Coherent Light Source
journal, April 2015

  • Nagler, Bob; Arnold, Brice; Bouchard, Gary
  • Journal of Synchrotron Radiation, Vol. 22, Issue 3
  • DOI: 10.1107/S1600577515004865

Inelastic deformation and phase transformation of shock compressed silicon single crystals
journal, November 2007

  • Turneaure, Stefan J.; Gupta, Y. M.
  • Applied Physics Letters, Vol. 91, Issue 20
  • DOI: 10.1063/1.2814067

Thermodynamics of uniaxial phase transition: Ab initio study of the diamond-to-β-tin transition in Si and Ge
journal, March 2001


Kinoform phase plates for focal plane irradiance profile control
journal, January 1994

  • Dixit, S. N.; Nugent, K. A.; Lawson, J. K.
  • Optics Letters, Vol. 19, Issue 6
  • DOI: 10.1364/OL.19.000417

Ultrafast Dynamic Compression Technique to Study the Kinetics of Phase Transformations in Bismuth
journal, August 2008


Experimental evidence for a phase transition in magnesium oxide at exoplanet pressures
journal, September 2013

  • Coppari, F.; Smith, R. F.; Eggert, J. H.
  • Nature Geoscience, Vol. 6, Issue 11
  • DOI: 10.1038/ngeo1948

Direct Observation of Melting in Shock-Compressed Bismuth With Femtosecond X-ray Diffraction
journal, August 2015


Whole powder pattern decomposition methods and applications: A retrospection
journal, December 2005


Orientation and rate dependence in high strain-rate compression of single-crystal silicon
journal, December 2012


Crystal Structures at High Pressures of Metallic Modifications of Silicon and Germanium
journal, February 1963


Supersonic Dislocation Bursts in Silicon
journal, June 2016

  • Hahn, E. N.; Zhao, S.; Bringa, E. M.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep26977

    Works referencing / citing this record:

    Reversible Phase Transition of Porous Coordination Polymers
    journal, January 2020

    • Fan, Wen‐Wen; Cheng, Yi; Zheng, Li‐Yan
    • Chemistry – A European Journal, Vol. 26, Issue 13
    • DOI: 10.1002/chem.201903985

    Quasi-hydrostatic equation of state of silicon up to 1 megabar at ambient temperature
    journal, October 2019


    Crystalline phase transitions and vibrational spectra of silicon up to multiterapascal pressures
    journal, October 2019


    Structural Transformation and Melting in Gold Shock Compressed to 355 GPa
    journal, July 2019


    FORTE – a multipurpose high-vacuum diffractometer for tender X-ray diffraction and spectroscopy at the SIRIUS beamline of Synchrotron SOLEIL
    journal, May 2019


    Direct imaging of ultrafast lattice dynamics
    journal, March 2019

    • Brown, S. Brennan; Gleason, A. E.; Galtier, E.
    • Science Advances, Vol. 5, Issue 3
    • DOI: 10.1126/sciadv.aau8044

      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.