DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: 1,2-Addition of Formic or Oxalic Acid to N{CH2CH2(PiPr2)}2 -Supported Mn(I) Dicarbonyl Complexes and the Manganese-Mediated Decomposition of Formic Acid

Abstract

(PNHP)Mn(CO)2 (I) carboxylate complexes (PNHP = HN{CH2CH2(PiPr2)}2) were prepared in this study via 1,2-addition of either formic or oxalic acid to (PNP)Mn(CO)2 (PNP = the deprotonated, amide form of the ligand –N{CH2CH2(PiPr2)}2). The structural and spectral properties of these complexes were compared. The manganese formate complex was found to be dimeric in the solid state and monomeric in solution. Half an equivalent of oxalic acid was employed to form the bridging oxalate dimanganese complex. The catalytic competencies of the carboxylate complexes were assessed, and the formate complex was found to decompose formic acid catalytically. Both dehydrogenation and dehydration pathways were active as assessed by the presence of H2, CO2, and H2O. Lastly, the addition of LiBF4 exhibited a strong inhibitory effect on the catalysis.

Authors:
ORCiD logo [1]; ORCiD logo [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1483496
Report Number(s):
LA-UR-16-22530
Journal ID: ISSN 0276-7333
Grant/Contract Number:  
89233218CNA000001
Resource Type:
Accepted Manuscript
Journal Name:
Organometallics
Additional Journal Information:
Journal Volume: 35; Journal Issue: 12; Journal ID: ISSN 0276-7333
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Tondreau, Aaron M., and Boncella, James M. 1,2-Addition of Formic or Oxalic Acid to –N{CH2CH2(PiPr2)}2 -Supported Mn(I) Dicarbonyl Complexes and the Manganese-Mediated Decomposition of Formic Acid. United States: N. p., 2016. Web. doi:10.1021/acs.organomet.6b00274.
Tondreau, Aaron M., & Boncella, James M. 1,2-Addition of Formic or Oxalic Acid to –N{CH2CH2(PiPr2)}2 -Supported Mn(I) Dicarbonyl Complexes and the Manganese-Mediated Decomposition of Formic Acid. United States. https://doi.org/10.1021/acs.organomet.6b00274
Tondreau, Aaron M., and Boncella, James M. Tue . "1,2-Addition of Formic or Oxalic Acid to –N{CH2CH2(PiPr2)}2 -Supported Mn(I) Dicarbonyl Complexes and the Manganese-Mediated Decomposition of Formic Acid". United States. https://doi.org/10.1021/acs.organomet.6b00274. https://www.osti.gov/servlets/purl/1483496.
@article{osti_1483496,
title = {1,2-Addition of Formic or Oxalic Acid to –N{CH2CH2(PiPr2)}2 -Supported Mn(I) Dicarbonyl Complexes and the Manganese-Mediated Decomposition of Formic Acid},
author = {Tondreau, Aaron M. and Boncella, James M.},
abstractNote = {(PNHP)Mn(CO)2 (I) carboxylate complexes (PNHP = HN{CH2CH2(PiPr2)}2) were prepared in this study via 1,2-addition of either formic or oxalic acid to (PNP)Mn(CO)2 (PNP = the deprotonated, amide form of the ligand –N{CH2CH2(PiPr2)}2). The structural and spectral properties of these complexes were compared. The manganese formate complex was found to be dimeric in the solid state and monomeric in solution. Half an equivalent of oxalic acid was employed to form the bridging oxalate dimanganese complex. The catalytic competencies of the carboxylate complexes were assessed, and the formate complex was found to decompose formic acid catalytically. Both dehydrogenation and dehydration pathways were active as assessed by the presence of H2, CO2, and H2O. Lastly, the addition of LiBF4 exhibited a strong inhibitory effect on the catalysis.},
doi = {10.1021/acs.organomet.6b00274},
journal = {Organometallics},
number = 12,
volume = 35,
place = {United States},
year = {Tue Jun 14 00:00:00 EDT 2016},
month = {Tue Jun 14 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 67 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Comparison of isoelectronic metal complexes of Fe(II) and Mn(I).

Save / Share:

Works referenced in this record:

Hydrogen generation from formic acid and alcohols using homogeneous catalysts
journal, January 2010

  • Johnson, Tarn C.; Morris, David J.; Wills, Martin
  • Chem. Soc. Rev., Vol. 39, Issue 1
  • DOI: 10.1039/B904495G

Catalytic Generation of Hydrogen from Formic acid and its Derivatives: Useful Hydrogen Storage Materials
journal, May 2010


Homogeneous catalysis by ruthenium carbonyl in alkaline solution: the water gas shift reaction
journal, January 1977

  • Laine, Richard M.; Rinker, Robert G.; Ford, Peter C.
  • Journal of the American Chemical Society, Vol. 99, Issue 1
  • DOI: 10.1021/ja00443a049

An efficient binuclear catalyst for decomposition of formic acid
journal, January 1998

  • Gao, Yuan; Kuncheria, Joshi; Puddephatt, Richard J.
  • Chemical Communications, Issue 21
  • DOI: 10.1039/a805789c

The interconversion of formic acid and hydrogen/carbon dioxide using a binuclear ruthenium complex catalyst
journal, January 2000

  • Gao, Yuan; Kuncheria, Joshi K.; Jenkins, Hilary A.
  • Journal of the Chemical Society, Dalton Transactions, Issue 18
  • DOI: 10.1039/b004234j

Controlled Generation of Hydrogen from Formic Acid Amine Adducts at Room Temperature and Application in H 2 /O 2 Fuel Cells
journal, May 2008

  • Loges, Björn; Boddien, Albert; Junge, Henrik
  • Angewandte Chemie International Edition, Vol. 47, Issue 21
  • DOI: 10.1002/anie.200705972

A Viable Hydrogen-Storage System Based On Selective Formic Acid Decomposition with a Ruthenium Catalyst
journal, May 2008

  • Fellay, Céline; Dyson, Paul J.; Laurenczy, Gábor
  • Angewandte Chemie International Edition, Vol. 47, Issue 21, p. 3966-3968
  • DOI: 10.1002/anie.200800320

Selective Formic Acid Decomposition for High-Pressure Hydrogen Generation: A Mechanistic Study
journal, February 2009

  • Fellay, Céline; Yan, Ning; Dyson, Paul J.
  • Chemistry - A European Journal, Vol. 15, Issue 15
  • DOI: 10.1002/chem.200801824

Hydrogen storage and delivery: immobilization of a highly active homogeneous catalyst for the decomposition of formic acid to hydrogen and carbon dioxide
journal, November 2009

  • Gan, Weijia; Dyson, Paul J.; Laurenczy, Gábor
  • Reaction Kinetics and Catalysis Letters, Vol. 98, Issue 2
  • DOI: 10.1007/s11144-009-0096-z

Insights into Hydrogen Generation from Formic Acid Using Ruthenium Complexes
journal, July 2009

  • Morris, David J.; Clarkson, Guy J.; Wills, Martin
  • Organometallics, Vol. 28, Issue 14
  • DOI: 10.1021/om900099u

Formic acid dehydrogenation catalysed by ruthenium complexes bearing the tripodal ligands triphos and NP 3
journal, January 2013

  • Mellone, Irene; Peruzzini, Maurizio; Rosi, Luca
  • Dalton Trans., Vol. 42, Issue 7
  • DOI: 10.1039/C2DT32043F

Rhodium(I) catalyzed decomposition of formic acid
journal, August 1979


Catalytic reactions of formate 4. A nitrite-promoted rhodium (III) catalyst for hydrogen generation from formic acid in aqueous solution
journal, September 1995


Efficient Catalytic Decomposition of Formic Acid for the Selective Generation of H 2 and H/D Exchange with a Water-Soluble Rhodium Complex in Aqueous Solution
journal, October 2008

  • Fukuzumi, Shunichi; Kobayashi, Takeshi; Suenobu, Tomoyoshi
  • ChemSusChem, Vol. 1, Issue 10
  • DOI: 10.1002/cssc.200800147

Efficient H 2 generation from formic acid using azole complexes in water
journal, January 2014

  • Manaka, Yuichi; Wang, Wan-Hui; Suna, Yuki
  • Catal. Sci. Technol., Vol. 4, Issue 1
  • DOI: 10.1039/C3CY00830D

Enhanced Hydrogen Generation from Formic Acid by Half-Sandwich Iridium(III) Complexes with Metal/NH Bifunctionality: A Pronounced Switch from Transfer Hydrogenation
journal, August 2015

  • Matsunami, Asuka; Kayaki, Yoshihito; Ikariya, Takao
  • Chemistry - A European Journal, Vol. 21, Issue 39
  • DOI: 10.1002/chem.201502412

Unprecedentedly High Formic Acid Dehydrogenation Activity on an Iridium Complex with an N , N ′-Diimine Ligand in Water
journal, July 2015

  • Wang, Zhijun; Lu, Sheng-Mei; Li, Jun
  • Chemistry - A European Journal, Vol. 21, Issue 36
  • DOI: 10.1002/chem.201502086

Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures
journal, March 2012

  • Hull, Jonathan F.; Himeda, Yuichiro; Wang, Wan-Hui
  • Nature Chemistry, Vol. 4, Issue 5, p. 383-388
  • DOI: 10.1038/nchem.1295

Long-range metal–ligand bifunctional catalysis: cyclometallated iridium catalysts for the mild and rapid dehydrogenation of formic acid
journal, January 2013

  • Barnard, Jonathan H.; Wang, Chao; Berry, Neil G.
  • Chemical Science, Vol. 4, Issue 3
  • DOI: 10.1039/c2sc21923a

Base-Free Production of H 2 by Dehydrogenation of Formic Acid Using An Iridium-bisMETAMORPhos Complex
journal, July 2013

  • Oldenhof, Sander; de Bruin, Bas; Lutz, Martin
  • Chemistry - A European Journal, Vol. 19, Issue 35
  • DOI: 10.1002/chem.201302230

Iron-Catalyzed Hydrogen Production from Formic Acid
journal, July 2010

  • Boddien, Albert; Loges, Björn; Gärtner, Felix
  • Journal of the American Chemical Society, Vol. 132, Issue 26
  • DOI: 10.1021/ja100925n

Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst
journal, September 2011


Efficient Hydrogen Liberation from Formic Acid Catalyzed by a Well-Defined Iron Pincer Complex under Mild Conditions
journal, May 2013

  • Zell, Thomas; Butschke, Burkhard; Ben-David, Yehoshoa
  • Chemistry - A European Journal, Vol. 19, Issue 25
  • DOI: 10.1002/chem.201301383

Base‐Free Non‐Noble‐Metal‐Catalyzed Hydrogen Generation from Formic Acid: Scope and Mechanistic Insights
journal, September 2014

  • Mellmann, Dörthe; Barsch, Enrico; Bauer, Matthias
  • Chemistry – A European Journal, Vol. 20, Issue 42
  • DOI: 10.1002/chem.201403602

Towards a Practical Setup for Hydrogen Production from Formic Acid
journal, June 2013


ortho-Metalation of Iron(0) Tribenzylphosphine Complexes: Homogeneous Catalysts for the Generation of Hydrogen from Formic Acid
journal, October 2010

  • Boddien, Albert; Gärtner, Felix; Jackstell, Ralf
  • Angewandte Chemie International Edition, Vol. 49, Issue 47
  • DOI: 10.1002/anie.201004621

Osmium and Ruthenium Catalysts for Dehydrogenation of Alcohols
journal, July 2011

  • Bertoli, Marcello; Choualeb, Aldjia; Lough, Alan J.
  • Organometallics, Vol. 30, Issue 13
  • DOI: 10.1021/om200437n

Selective Hydrogen Production from Methanol with a Defined Iron Pincer Catalyst under Mild Conditions
journal, December 2013

  • Alberico, Elisabetta; Sponholz, Peter; Cordes, Christoph
  • Angewandte Chemie International Edition, Vol. 52, Issue 52
  • DOI: 10.1002/anie.201307224

Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide
journal, February 2013

  • Nielsen, Martin; Alberico, Elisabetta; Baumann, Wolfgang
  • Nature, Vol. 495, Issue 7439
  • DOI: 10.1038/nature11891

Base-Free Methanol Dehydrogenation Using a Pincer-Supported Iron Compound and Lewis Acid Co-catalyst
journal, March 2015

  • Bielinski, Elizabeth A.; Förster, Moritz; Zhang, Yuanyuan
  • ACS Catalysis, Vol. 5, Issue 4
  • DOI: 10.1021/acscatal.5b00137

Lewis Acid-Assisted Formic Acid Dehydrogenation Using a Pincer-Supported Iron Catalyst
journal, July 2014

  • Bielinski, Elizabeth A.; Lagaditis, Paraskevi O.; Zhang, Yuanyuan
  • Journal of the American Chemical Society, Vol. 136, Issue 29
  • DOI: 10.1021/ja505241x

Synthesis and Structure of Six-Coordinate Iron Borohydride Complexes Supported by PNP Ligands
journal, December 2013

  • Koehne, Ingo; Schmeier, Timothy J.; Bielinski, Elizabeth A.
  • Inorganic Chemistry, Vol. 53, Issue 4
  • DOI: 10.1021/ic402762v

Well-Defined Iron Catalysts for the Acceptorless Reversible Dehydrogenation-Hydrogenation of Alcohols and Ketones
journal, October 2014

  • Chakraborty, Sumit; Lagaditis, Paraskevi O.; Förster, Moritz
  • ACS Catalysis, Vol. 4, Issue 11
  • DOI: 10.1021/cs5009656

The synthesis of PNP-supported low-spin nitro manganese(I) carbonyl complexes
journal, September 2016


Ligand Reactivity in Diarylamido/Bis(Phosphine) PNP Complexes of Mn(CO) 3 and Re(CO) 3
journal, October 2009

  • Radosevich, Alexander T.; Melnick, Jonathan G.; Stoian, Sebastian A.
  • Inorganic Chemistry, Vol. 48, Issue 19
  • DOI: 10.1021/ic9010218

High-Spin Manganese(II) Complexes of an Amido/Bis(Phosphine) PNP Ligand
journal, May 2010

  • Bacciu, Deborha; Chen, Chun-Hsing; Surawatanawong, Panida
  • Inorganic Chemistry, Vol. 49, Issue 11
  • DOI: 10.1021/ic1004424

Ruthenium Complexes with Cooperative PNP-Pincer Amine, Amido, Imine, and Enamido Ligands: Facile Ligand Backbone Functionalization Processes
journal, June 2010

  • Friedrich, Anja; Drees, Markus; Käss, Martina
  • Inorganic Chemistry, Vol. 49, Issue 12
  • DOI: 10.1021/ic100358m

Bacillus subtilis YvrK Is an Acid-Induced Oxalate Decarboxylase
journal, January 2000


Oxalate Decarboxylase Requires Manganese and Dioxygen for Activity: OVEREXPRESSION AND CHARACTERIZATION OF
journal, August 2001

  • Tanner, Adam; Bowater, Laura; Fairhurst, Shirley A.
  • Journal of Biological Chemistry, Vol. 276, Issue 47
  • DOI: 10.1074/jbc.M107202200

Structure of Oxalate Decarboxylase from Bacillus subtilis at 1.75 Å Resolution ,
journal, June 2002

  • Anand, Ruchi; Dorrestein, Pieter C.; Kinsland, Cynthia
  • Biochemistry, Vol. 41, Issue 24
  • DOI: 10.1021/bi0200965

A Closed Conformation of Bacillus subtilis Oxalate Decarboxylase OxdC Provides Evidence for the True Identity of the Active Site
journal, May 2004

  • Just, Victoria J.; Stevenson, Clare E. M.; Bowater, Laura
  • Journal of Biological Chemistry, Vol. 279, Issue 19
  • DOI: 10.1074/jbc.M313820200

Homogeneous catalytic hydrogenation of free carboxylic acids in the presence of cluster ruthenium carbonyl hydrides
journal, April 1980


Iron catalyzed CO 2 hydrogenation to formate enhanced by Lewis acid co-catalysts
journal, January 2015

  • Zhang, Yuanyuan; MacIntosh, Alex D.; Wong, Janice L.
  • Chemical Science, Vol. 6, Issue 7
  • DOI: 10.1039/C5SC01467K

Synthesis and characterization of iron complexes based on bis-phosphinite PONOP and bis-phosphite PONOP pincer ligands
journal, December 2014


Works referencing / citing this record:

Bio-mimetic self-assembled computationally designed catalysts of Mo and W for hydrogenation of CO 2 /dehydrogenation of HCOOH inspired by the active site of formate dehydrogenase
journal, January 2019

  • Shiekh, Bilal Ahmad; Kaur, Damanjit; Kumar, Sourav
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 38
  • DOI: 10.1039/c9cp03406d

Manganese-Catalyzed Sustainable Synthesis of Pyrroles from Alcohols and Amino Alcohols
journal, May 2017

  • Kallmeier, Fabian; Dudziec, Beata; Irrgang, Torsten
  • Angewandte Chemie International Edition, Vol. 56, Issue 25
  • DOI: 10.1002/anie.201702543

Benzylene-linked [PNP] scaffolds and their cyclometalated zirconium and hafnium complexes
journal, January 2017

  • Sietzen, Malte; Batke, Sonja; Antoni, Patrick W.
  • Dalton Transactions, Vol. 46, Issue 18
  • DOI: 10.1039/c7dt00413c

Catalytic upgrading of ethanol to n -butanol using an aliphatic Mn–PNP complex: theoretical insights into reaction mechanisms and product selectivity
journal, January 2019

  • Rawat, Kuber Singh; Mandal, Shyama Charan; Bhauriyal, Preeti
  • Catalysis Science & Technology, Vol. 9, Issue 11
  • DOI: 10.1039/c9cy00501c

Hydrogenation of Carbonyl Derivatives Catalysed by Manganese Complexes Bearing Bidentate Pyridinyl-Phosphine Ligands
journal, December 2017

  • Wei, Duo; Bruneau-Voisine, Antoine; Chauvin, Téo
  • Advanced Synthesis & Catalysis, Vol. 360, Issue 4
  • DOI: 10.1002/adsc.201701115

Oxidative Transformations of Biosourced Alcohols Catalyzed by Earth-Abundant Transition Metals
journal, June 2017


Mangankomplexe in der (De)Hydrier-Katalyse - ein Vergleich mit Cobalt- und Eisenkatalysatoren
journal, December 2017


Pentacarbonylmethylmanganese( i ) as a synthon for Mn( i ) pincer catalysts
journal, January 2019

  • Kadassery, Karthika J.; Lacy, David C.
  • Dalton Transactions, Vol. 48, Issue 14
  • DOI: 10.1039/c9dt00529c

Manganese-Catalyzed Direct Olefination of Methyl-Substituted Heteroarenes with Primary Alcohols
journal, June 2018

  • Barman, Milan K.; Waiba, Satyadeep; Maji, Biplab
  • Angewandte Chemie, Vol. 130, Issue 29
  • DOI: 10.1002/ange.201804729

Manganese Complexes for (De)Hydrogenation Catalysis: A Comparison to Cobalt and Iron Catalysts
journal, December 2017

  • Kallmeier, Fabian; Kempe, Rhett
  • Angewandte Chemie International Edition, Vol. 57, Issue 1
  • DOI: 10.1002/anie.201709010

Manganese(I)-Catalyzed Enantioselective Hydrogenation of Ketones Using a Defined Chiral PNP Pincer Ligand
journal, August 2017

  • Garbe, Marcel; Junge, Kathrin; Walker, Svenja
  • Angewandte Chemie International Edition, Vol. 56, Issue 37
  • DOI: 10.1002/anie.201705471

A hemilabile manganese( i )–phenol complex and its coordination induced O–H bond weakening
journal, January 2020

  • Kadassery, Karthika J.; Crawley, Matthew R.; MacMillan, Samantha N.
  • Dalton Transactions
  • DOI: 10.1039/d0dt00973c

A Highly Active Manganese Catalyst for Enantioselective Ketone and Ester Hydrogenation
journal, April 2017

  • Widegren, Magnus B.; Harkness, Gavin J.; Slawin, Alexandra M. Z.
  • Angewandte Chemie, Vol. 129, Issue 21
  • DOI: 10.1002/ange.201702406

Highly Efficient Base-Free Dehydrogenation of Formic Acid at Low Temperature
journal, August 2018

  • Prichatz, Christoph; Trincado, Monica; Tan, Lilin
  • ChemSusChem, Vol. 11, Issue 18
  • DOI: 10.1002/cssc.201801072

Carbon dioxide hydrogenation catalysed by well-defined Mn( i ) PNP pincer hydride complexes
journal, January 2017

  • Bertini, Federica; Glatz, Mathias; Gorgas, Nikolaus
  • Chemical Science, Vol. 8, Issue 7
  • DOI: 10.1039/c7sc00209b

Synthesis and characterization of bis- and tris-carbonyl Mn(I) and Re(I) PNP pincer complexes
journal, October 2018

  • Glatz, Mathias; Pecak, Jan; Haager, Lena
  • Monatshefte für Chemie - Chemical Monthly, Vol. 150, Issue 1
  • DOI: 10.1007/s00706-018-2307-7

Hydrogen production from formic acid catalyzed by a phosphine free manganese complex: investigation and mechanistic insights
journal, January 2020

  • Léval, Alexander; Agapova, Anastasiya; Steinlechner, Christoph
  • Green Chemistry, Vol. 22, Issue 3
  • DOI: 10.1039/c9gc02453k

Manganese(I)-Catalyzed Enantioselective Hydrogenation of Ketones Using a Defined Chiral PNP Pincer Ligand
journal, August 2017

  • Garbe, Marcel; Junge, Kathrin; Walker, Svenja
  • Angewandte Chemie, Vol. 129, Issue 37
  • DOI: 10.1002/ange.201705471

A Highly Active Manganese Catalyst for Enantioselective Ketone and Ester Hydrogenation
journal, April 2017

  • Widegren, Magnus B.; Harkness, Gavin J.; Slawin, Alexandra M. Z.
  • Angewandte Chemie International Edition, Vol. 56, Issue 21
  • DOI: 10.1002/anie.201702406

Manganese-Catalyzed Direct Olefination of Methyl-Substituted Heteroarenes with Primary Alcohols
journal, June 2018

  • Barman, Milan K.; Waiba, Satyadeep; Maji, Biplab
  • Angewandte Chemie International Edition, Vol. 57, Issue 29
  • DOI: 10.1002/anie.201804729

Synthesis and characterization of bis- and tris-carbonyl Mn(I) and Re(I) PNP pincer complexes
journal, October 2018

  • Glatz, Mathias; Pecak, Jan; Haager, Lena
  • Monatshefte für Chemie - Chemical Monthly, Vol. 150, Issue 1
  • DOI: 10.1007/s00706-018-2307-7

Manganese(I)-Catalyzed Cross-Coupling of Ketones and Secondary Alcohols with Primary Alcohols
journal, June 2019


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.