DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Surface Orientation Dependent Water Dissociation on Rutile Ruthenium Dioxide

Abstract

Rutile RuO2 is a highly active catalyst for a number of (electro)chemical reactions in aqueous solutions or in humid environments. However, the study of the interaction of RuO2 surfaces with water has been confined largely to the ultrahigh vacuum environment and to the thermodynamically stable (110) surface. In this work, we combine ambient-pressure X-ray photoelectron spectroscopy, in situ surface diffraction, and density functional theory calculations to investigate how four different facets of RuO2 interact with water under humid and electrochemical environments. The vacant coordinatively unsaturated Ru site (CUS) allows for the adsorption and dissociation of water molecules. Different surfaces exhibit unique binding energetics for -H2O and -OH and can allow for different degrees of hydrogen bonding between the adsorbates. Consequently, the degree of water dissociation is found to be sensitive to the surface crystallographic orientation-being maximum for the (101) surface, followed by the (110), (001) and (100) surfaces. This study identifies crystallographic orientation as an important parameter to tune not only the density of active sites but also the energetics for water dissociation; this finding is of great significance for many catalytic reactions, where water is a key reactant, or product.

Authors:
ORCiD logo [1];  [2];  [1];  [3]; ORCiD logo [4];  [5]; ORCiD logo [2]; ORCiD logo [6];  [5]; ORCiD logo [7];  [8]; ORCiD logo [9]; ORCiD logo [1]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  2. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  3. Technical Univ. of Denmark, Lyngby (Denmark)
  4. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  5. Argonne National Lab. (ANL), Argonne, IL (United States)
  6. Oregon State Univ., Corvallis, OR (United States)
  7. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  8. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Univ. di Milano-Bicocca, Milano (Italy)
  9. Technical Univ. of Denmark, Lyngby (Denmark); Imperial College London, London (United Kingdom)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1470909
Alternate Identifier(s):
OSTI ID: 1483418
Grant/Contract Number:  
AC02-76SF00515; 02/MI/MIT/CP/11/07633/GEN/G/00; 12-133817; AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 122; Journal Issue: 31; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Rao, Reshma R., Kolb, Manuel J., Hwang, Jonathan, Pedersen, Anders Filsøe, Mehta, Apurva, You, Hoydoo, Stoerzinger, Kelsey A., Feng, Zhenxing, Zhou, Hua, Bluhm, Hendrik, Giordano, Livia, Stephens, Ifan E. L., and Shao-Horn, Yang. Surface Orientation Dependent Water Dissociation on Rutile Ruthenium Dioxide. United States: N. p., 2018. Web. doi:10.1021/acs.jpcc.8b04284.
Rao, Reshma R., Kolb, Manuel J., Hwang, Jonathan, Pedersen, Anders Filsøe, Mehta, Apurva, You, Hoydoo, Stoerzinger, Kelsey A., Feng, Zhenxing, Zhou, Hua, Bluhm, Hendrik, Giordano, Livia, Stephens, Ifan E. L., & Shao-Horn, Yang. Surface Orientation Dependent Water Dissociation on Rutile Ruthenium Dioxide. United States. https://doi.org/10.1021/acs.jpcc.8b04284
Rao, Reshma R., Kolb, Manuel J., Hwang, Jonathan, Pedersen, Anders Filsøe, Mehta, Apurva, You, Hoydoo, Stoerzinger, Kelsey A., Feng, Zhenxing, Zhou, Hua, Bluhm, Hendrik, Giordano, Livia, Stephens, Ifan E. L., and Shao-Horn, Yang. Thu . "Surface Orientation Dependent Water Dissociation on Rutile Ruthenium Dioxide". United States. https://doi.org/10.1021/acs.jpcc.8b04284. https://www.osti.gov/servlets/purl/1470909.
@article{osti_1470909,
title = {Surface Orientation Dependent Water Dissociation on Rutile Ruthenium Dioxide},
author = {Rao, Reshma R. and Kolb, Manuel J. and Hwang, Jonathan and Pedersen, Anders Filsøe and Mehta, Apurva and You, Hoydoo and Stoerzinger, Kelsey A. and Feng, Zhenxing and Zhou, Hua and Bluhm, Hendrik and Giordano, Livia and Stephens, Ifan E. L. and Shao-Horn, Yang},
abstractNote = {Rutile RuO2 is a highly active catalyst for a number of (electro)chemical reactions in aqueous solutions or in humid environments. However, the study of the interaction of RuO2 surfaces with water has been confined largely to the ultrahigh vacuum environment and to the thermodynamically stable (110) surface. In this work, we combine ambient-pressure X-ray photoelectron spectroscopy, in situ surface diffraction, and density functional theory calculations to investigate how four different facets of RuO2 interact with water under humid and electrochemical environments. The vacant coordinatively unsaturated Ru site (CUS) allows for the adsorption and dissociation of water molecules. Different surfaces exhibit unique binding energetics for -H2O and -OH and can allow for different degrees of hydrogen bonding between the adsorbates. Consequently, the degree of water dissociation is found to be sensitive to the surface crystallographic orientation-being maximum for the (101) surface, followed by the (110), (001) and (100) surfaces. This study identifies crystallographic orientation as an important parameter to tune not only the density of active sites but also the energetics for water dissociation; this finding is of great significance for many catalytic reactions, where water is a key reactant, or product.},
doi = {10.1021/acs.jpcc.8b04284},
journal = {Journal of Physical Chemistry. C},
number = 31,
volume = 122,
place = {United States},
year = {Thu Jul 12 00:00:00 EDT 2018},
month = {Thu Jul 12 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 38 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: (A) Water isotherm at room temperature (-25 °C) for the RuO2(110) termination, probing the O ls core level at 735 eV incident energy. Spectra are offset for clarity. Spectra are deconvoluted into gas phase water (H2Ovap) shaded in gray, H2O and $-$OH adsorbed on the CUS site shadedmore » in purple, protonated bridging oxygen in hatched purple, and lattice oxygen outlined in black. (B) Intensity of the protonated species on the CUS, either $-$OH or $-$H2O (filled) and bridge site (open) normalized to the lattice oxygen peak as a function of water pressure at room temperature. ( C) Proposed surface structure at high water pressure showing every second water molecule on the CUS site being dissociated, with the hydrogen donated to the neighboring bridging oxygen ( top view shown in Figure S33).« less

Save / Share:

Works referenced in this record:

Electrochemical Photolysis of Water at a Semiconductor Electrode
journal, July 1972

  • Fujishima, Akira; Honda, Kenichi
  • Nature, Vol. 238, Issue 5358, p. 37-38
  • DOI: 10.1038/238037a0

The interaction of water with solid surfaces: fundamental aspects revisited
journal, May 2002


The interaction of water with solid surfaces: Fundamental aspects
journal, October 1987


Water growth on metals and oxides: binding, dissociation and role of hydroxyl groups
journal, January 2009

  • Salmeron, M.; Bluhm, H.; Tatarkhanov, M.
  • Faraday Discuss., Vol. 141
  • DOI: 10.1039/B806516K

CO oxidation on Pt() promoted by coadsorbed H2O
journal, December 2001


The Effect of Water on the CO Oxidation on Ag(111) and Au(111) Surfaces: A First-Principle Study
journal, October 2008

  • Su, Hai-Yan; Yang, Ming-Mei; Bao, Xin-He
  • The Journal of Physical Chemistry C, Vol. 112, Issue 44
  • DOI: 10.1021/jp803400p

Electrocatalysis in the anodic evolution of oxygen and chlorine
journal, November 1984


Synthesis and Activities of Rutile IrO 2 and RuO 2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions
journal, January 2012

  • Lee, Youngmin; Suntivich, Jin; May, Kevin J.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 3
  • DOI: 10.1021/jz2016507

Orientation-Dependent Oxygen Evolution Activities of Rutile IrO 2 and RuO 2
journal, April 2014

  • Stoerzinger, Kelsey A.; Qiao, Liang; Biegalski, Michael D.
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 10
  • DOI: 10.1021/jz500610u

Activity–Stability Trends for the Oxygen Evolution Reaction on Monometallic Oxides in Acidic Environments
journal, July 2014

  • Danilovic, Nemanja; Subbaraman, Ramachandran; Chang, Kee-Chul
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 14
  • DOI: 10.1021/jz501061n

Oxygen evolution on well-characterized mass-selected Ru and RuO 2 nanoparticles
journal, January 2015

  • Paoli, Elisa A.; Masini, Federico; Frydendal, Rasmus
  • Chemical Science, Vol. 6, Issue 1
  • DOI: 10.1039/C4SC02685C

Powering the planet with solar fuel
journal, April 2009


Solar Water Splitting Cells
journal, November 2010

  • Walter, Michael G.; Warren, Emily L.; McKone, James R.
  • Chemical Reviews, Vol. 110, Issue 11, p. 6446-6473
  • DOI: 10.1021/cr1002326

Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds
journal, November 2010

  • Cook, Timothy R.; Dogutan, Dilek K.; Reece, Steven Y.
  • Chemical Reviews, Vol. 110, Issue 11
  • DOI: 10.1021/cr100246c

In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+
journal, August 2008


A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II
journal, March 2012

  • Duan, Lele; Bozoglian, Fernando; Mandal, Sukanta
  • Nature Chemistry, Vol. 4, Issue 5
  • DOI: 10.1038/nchem.1301

Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting
journal, January 2014

  • Hisatomi, Takashi; Kubota, Jun; Domen, Kazunari
  • Chem. Soc. Rev., Vol. 43, Issue 22
  • DOI: 10.1039/C3CS60378D

A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles
journal, October 2011


Electrocatalytic Oxygen Evolution Reaction in Acidic Environments - Reaction Mechanisms and Catalysts
journal, October 2016

  • Reier, Tobias; Nong, Hong Nhan; Teschner, Detre
  • Advanced Energy Materials, Vol. 7, Issue 1
  • DOI: 10.1002/aenm.201601275

The Invention and Industrial Development of Metal Anodes
journal, August 1980

  • Beer, Henri Bernard
  • Journal of The Electrochemical Society, Vol. 127, Issue 8
  • DOI: 10.1149/1.2130021

Electrocatalysis: understanding the success of DSA®
journal, May 2000


Temperature-Dependent Kinetic Studies of the Chlorine Evolution Reaction over RuO 2 (110) Model Electrodes
journal, March 2017

  • Sohrabnejad-Eskan, Iman; Goryachev, Andrey; Exner, Kai S.
  • ACS Catalysis, Vol. 7, Issue 4
  • DOI: 10.1021/acscatal.6b03415

Atomic-Scale Structure and Catalytic Reactivity of the RuO2(110) Surface
journal, February 2000


Visualization of Atomic Processes on Ruthenium Dioxide using Scanning Tunneling Microscopy
journal, February 2004


Characterization of Various Oxygen Species on an Oxide Surface:  RuO 2 (110)
journal, May 2001

  • Kim, Y. D.; Seitsonen, A. P.; Wendt, S.
  • The Journal of Physical Chemistry B, Vol. 105, Issue 18
  • DOI: 10.1021/jp003213j

Spectroscopic characterization of catalytically active surface sites of a metallic oxide
journal, July 2001


Catalytic Oxidation of Ammonia on RuO 2 (110) Surfaces:  Mechanism and Selectivity
journal, April 2005

  • Wang, Y.; Jacobi, K.; Schöne, W. -D.
  • The Journal of Physical Chemistry B, Vol. 109, Issue 16
  • DOI: 10.1021/jp045735v

Oxidation Reactions over RuO2: A Comparative Study of the Reactivity of the (110) Single Crystal and Polycrystalline Surfaces
journal, September 2001


Full Kinetics from First Principles of the Chlorine Evolution Reaction over a RuO 2 (110) Model Electrode
journal, May 2016

  • Exner, Kai S.; Anton, Josef; Jacob, Timo
  • Angewandte Chemie International Edition, Vol. 55, Issue 26
  • DOI: 10.1002/anie.201511804

Stable Deacon Process for HCl Oxidation over RuO2
journal, February 2008

  • Crihan, Daniela; Knapp, Marcus; Zweidinger, Stefan
  • Angewandte Chemie International Edition, Vol. 47, Issue 11
  • DOI: 10.1002/anie.200705124

Interaction of NO with the Stoichiometric RuO 2 (110) Surface
journal, December 2003

  • Wang, Y.; Jacobi, K.; Ertl, G.
  • The Journal of Physical Chemistry B, Vol. 107, Issue 50
  • DOI: 10.1021/jp0308108

Hydrogen adsorption on Ru O 2 ( 110 ) : Density-functional calculations
journal, December 2004


Effect of a humid environment on the surface structure of RuO 2 ( 110 )
journal, May 2003


Oxygen reduction on nanocrystalline ruthenia – local structure effects
journal, January 2015

  • Abbott, Daniel F.; Mukerjee, Sanjeev; Petrykin, Valery
  • RSC Advances, Vol. 5, Issue 2
  • DOI: 10.1039/C4RA10001H

Electrolysis of water on oxide surfaces
journal, September 2007


Atomic-Scale Analysis of the RuO 2 /Water Interface under Electrochemical Conditions
journal, April 2016

  • Watanabe, Eriko; Rossmeisl, Jan; Björketun, Mårten E.
  • The Journal of Physical Chemistry C, Vol. 120, Issue 15
  • DOI: 10.1021/acs.jpcc.5b12448

Interaction of H2O with the RuO2(110) surface studied by HREELS and TDS
journal, January 2003


Dimerization Induced Deprotonation of Water on RuO 2 (110)
journal, September 2014

  • Mu, Rentao; Cantu, David C.; Lin, Xiao
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 19
  • DOI: 10.1021/jz501810g

Composition, structure, and stability of RuO 2 ( 110 ) as a function of oxygen pressure
journal, December 2001


Surface core-level shifts at an oxygen-rich Ru surface: O/Ru(0001) vs. RuO2(110)
journal, September 2001


Mixed Dissociative and Molecular Adsorption of Water on the Rutile (110) Surface
journal, January 1998


Structure of a model TiO2 photocatalytic interface
journal, November 2016

  • Hussain, H.; Tocci, G.; Woolcot, T.
  • Nature Materials, Vol. 16, Issue 4
  • DOI: 10.1038/nmat4793

Chemical reactions on rutile TiO2(110)
journal, January 2008

  • Lun Pang, Chi; Lindsay, Robert; Thornton, Geoff
  • Chemical Society Reviews, Vol. 37, Issue 10
  • DOI: 10.1039/b719085a

Direct visualization of defect-mediated dissociation of water on TiO2(110)
journal, February 2006

  • Bikondoa, Oier; Pang, Chi L.; Ithnin, Roslinda
  • Nature Materials, Vol. 5, Issue 3
  • DOI: 10.1038/nmat1592

Deprotonated Water Dimers: The Building Blocks of Segmented Water Chains on Rutile RuO 2 (110)
journal, August 2015

  • Mu, Rentao; Cantu, David C.; Glezakou, Vassiliki-Alexandra
  • The Journal of Physical Chemistry C, Vol. 119, Issue 41
  • DOI: 10.1021/acs.jpcc.5b07158

Evidence for partial dissociation of water on flat MgO(100) surfaces
journal, February 2002


Partial Dissociation of Water Leads to Stable Superstructures on the Surface of Zinc Oxide
journal, December 2004

  • Meyer, Bernd; Marx, Dominik; Dulub, Olga
  • Angewandte Chemie International Edition, Vol. 43, Issue 48
  • DOI: 10.1002/anie.200461696

Spectroscopic evidence for the partial dissociation of H2O on ZnO(101̄0)
journal, January 2006

  • Wang, Y.; Muhler, M.; Wöll, Ch.
  • Physical Chemistry Chemical Physics, Vol. 8, Issue 13
  • DOI: 10.1039/b515489h

Partial Dissociation of Water on Fe 3 O 4 ( 001 ) : Adsorbate Induced Charge and Orbital Order
journal, October 2009


Epitaxial Growth of RuO 2 (100) on Ru(101̄0):  Surface Structure and Other Properties
journal, March 2001

  • Kim, Y. D.; Schwegmann, S.; Seitsonen, A. P.
  • The Journal of Physical Chemistry B, Vol. 105, Issue 11
  • DOI: 10.1021/jp003650y

Molecular dynamics study of water in contact with the TiO 2 rutile-110, 100, 101, 001 and anatase-101, 001 surface
journal, May 2011


Structural Sensitivity in the Dissociation of Water on TiO 2 Single-Crystal Surfaces
journal, January 1996


Influence of Strain on the Surface–Oxygen Interaction and the Oxygen Evolution Reaction of SrIrO 3
journal, February 2018

  • Kuo, Ding-Yuan; Eom, C. John; Kawasaki, Jason K.
  • The Journal of Physical Chemistry C, Vol. 122, Issue 8
  • DOI: 10.1021/acs.jpcc.7b12081

Electrochemical and X-ray scattering study of well defined RuO2 single crystal surfaces
journal, May 2002


Cathodic activation of RuO 2 single crystal surfaces for hydrogen-evolution reaction
journal, September 2003


Voltage-Controlled Interfacial Layering in an Ionic Liquid on SrTiO 3
journal, March 2016


Ab initiomolecular dynamics for liquid metals
journal, January 1993


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Projector augmented-wave method
journal, December 1994


From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Special points for Brillouin-zone integrations
journal, June 1976

  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode
journal, November 2004

  • Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 46
  • DOI: 10.1021/jp047349j

Density functional theory study of adsorption of H 2 O, H, O, and OH on stepped platinum surfaces
journal, April 2014

  • Kolb, Manuel J.; Calle-Vallejo, Federico; Juurlink, Ludo B. F.
  • The Journal of Chemical Physics, Vol. 140, Issue 13
  • DOI: 10.1063/1.4869749

The Nature of Water Nucleation Sites on TiO 2 (110) Surfaces Revealed by Ambient Pressure X-ray Photoelectron Spectroscopy
journal, June 2007

  • Ketteler, Guido; Yamamoto, Susumu; Bluhm, Hendrik
  • The Journal of Physical Chemistry C, Vol. 111, Issue 23
  • DOI: 10.1021/jp068606i

Formation of hydroxyl and water layers on MgO films studied with ambient pressure XPS
journal, January 2011


Oxidation of methanol on Ru catalyst: Effect of the reagents partial pressures on the catalyst oxidation state and selectivity
journal, June 2007


The adsorption of liquid and vapor water on TiO2(110) surfaces: the role of defects
journal, December 1995


The interaction of H2O with a TiO2(110) surface
journal, February 1994


Adsorption and Reaction of CO 2 on the RuO 2 (110) Surface
journal, May 2002

  • Wang, Y.; Lafosse, A.; Jacobi, K.
  • The Journal of Physical Chemistry B, Vol. 106, Issue 21
  • DOI: 10.1021/jp025619x

The Role of Ru Redox in pH-Dependent Oxygen Evolution on Rutile Ruthenium Dioxide Surfaces
journal, May 2017


Orientation-Dependent Oxygen Evolution on RuO 2 without Lattice Exchange
journal, March 2017


Direct Work Function Measurement by Gas Phase Photoelectron Spectroscopy and Its Application on PbS Nanoparticles
journal, November 2013

  • Axnanda, Stephanus; Scheele, Marcus; Crumlin, Ethan
  • Nano Letters, Vol. 13, Issue 12
  • DOI: 10.1021/nl403524a

Origin of Overpotential-Dependent Surface Dipole at CeO 2– x /Gas Interface During Electrochemical Oxygen Insertion Reactions
journal, August 2016


Impact of Ti Incorporation on Hydroxylation and Wetting of Fe 3 O 4
journal, August 2017

  • Stoerzinger, Kelsey A.; Pearce, Carolyn I.; Droubay, Timothy C.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 35
  • DOI: 10.1021/acs.jpcc.7b06258

Decreasing the Hydroxylation Affinity of La 1– x Sr x MnO 3 Perovskites To Promote Oxygen Reduction Electrocatalysis
journal, November 2017


Surface Coordination Chemistry: Dihydrogen versus Hydride Complexes on RuO2(110)
journal, May 2003

  • Wang, Jinhai; Fan, Chao Yang; Sun, Qiang
  • Angewandte Chemie International Edition, Vol. 42, Issue 19
  • DOI: 10.1002/anie.200250659

Exploring Pretreatment-Morphology Relationships: Ab Initio Wulff Construction for RuO 2 Nanoparticles under Oxidising Conditions
journal, July 2013


Structure sensitivity in oxide catalysis: First-principles kinetic Monte Carlo simulations for CO oxidation at RuO 2 (111)
journal, November 2015

  • Wang, Tongyu; Reuter, Karsten
  • The Journal of Chemical Physics, Vol. 143, Issue 20
  • DOI: 10.1063/1.4936354

XSEDE: Accelerating Scientific Discovery
journal, September 2014

  • Towns, John; Cockerill, Timothy; Dahan, Maytal
  • Computing in Science & Engineering, Vol. 16, Issue 5
  • DOI: 10.1109/MCSE.2014.80

Works referencing / citing this record:

Probing catalytic surfaces by correlative scanning photoemission electron microscopy and atom probe tomography
journal, January 2020

  • Schweinar, Kevin; Nicholls, Rachel L.; Rajamathi, Catherine R.
  • Journal of Materials Chemistry A, Vol. 8, Issue 1
  • DOI: 10.1039/c9ta10818a

Interaction of water with oxide thin film model systems
journal, January 2019

  • Sterrer, Martin; Nilius, Niklas; Shaikhutdinov, Shamil
  • Journal of Materials Research, Vol. 34, Issue 3
  • DOI: 10.1557/jmr.2018.454

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.