skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Understanding the Mechanism of CO2 Capture by 1,3 Di-substituted Imidazolium Acetate Based Ionic Liquids

Abstract

Efficient CO2 capture by ionic liquids needs a thorough understanding of underlying mechanisms of the CO2 interaction with ionic liquids, especially when it involves chemisorption. In this work we have systematically investigated the mechanism of CO2 capture by 1,3 di-substituted imidazolium acetate ionic liquids using density functional theory. Solvent effects are analyzed using QM/MM and QM/QM approaches with the help of molecular dynamics simulations and ONIOM methods. The investigation of different stepwise mechanisms shows that CO2 could be involved in the first step of the reaction mechanism, also a new two-step mechanism is proposed. Furthermore, the final stabilization step is analyzed and pointed out to be responsible for important experimentally-observed features of the reaction.

Authors:
 [1];  [2];  [3];  [3];  [3];  [1]
  1. Univ. of Pittsburgh, Pittsburgh, PA (United States)
  2. National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)
  3. Carnegie Mellon Univ., Pittsburgh, PA (United States)
Publication Date:
Research Org.:
National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1483263
Resource Type:
Accepted Manuscript
Journal Name:
Physical Chemistry Chemical Physics. PCCP (Print)
Additional Journal Information:
Journal Name: Physical Chemistry Chemical Physics. PCCP (Print); Journal Volume: 18; Journal Issue: 3; Journal ID: ISSN 1463-9076
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Mao, James X., Steckel, Janice A., Yan, Fangyong, Dhumal, Nilesh, Kim, Hyung, and Damodaran, Krishnan. Understanding the Mechanism of CO2 Capture by 1,3 Di-substituted Imidazolium Acetate Based Ionic Liquids. United States: N. p., 2015. Web. doi:10.1039/c5cp05713b.
Mao, James X., Steckel, Janice A., Yan, Fangyong, Dhumal, Nilesh, Kim, Hyung, & Damodaran, Krishnan. Understanding the Mechanism of CO2 Capture by 1,3 Di-substituted Imidazolium Acetate Based Ionic Liquids. United States. doi:10.1039/c5cp05713b.
Mao, James X., Steckel, Janice A., Yan, Fangyong, Dhumal, Nilesh, Kim, Hyung, and Damodaran, Krishnan. Wed . "Understanding the Mechanism of CO2 Capture by 1,3 Di-substituted Imidazolium Acetate Based Ionic Liquids". United States. doi:10.1039/c5cp05713b. https://www.osti.gov/servlets/purl/1483263.
@article{osti_1483263,
title = {Understanding the Mechanism of CO2 Capture by 1,3 Di-substituted Imidazolium Acetate Based Ionic Liquids},
author = {Mao, James X. and Steckel, Janice A. and Yan, Fangyong and Dhumal, Nilesh and Kim, Hyung and Damodaran, Krishnan},
abstractNote = {Efficient CO2 capture by ionic liquids needs a thorough understanding of underlying mechanisms of the CO2 interaction with ionic liquids, especially when it involves chemisorption. In this work we have systematically investigated the mechanism of CO2 capture by 1,3 di-substituted imidazolium acetate ionic liquids using density functional theory. Solvent effects are analyzed using QM/MM and QM/QM approaches with the help of molecular dynamics simulations and ONIOM methods. The investigation of different stepwise mechanisms shows that CO2 could be involved in the first step of the reaction mechanism, also a new two-step mechanism is proposed. Furthermore, the final stabilization step is analyzed and pointed out to be responsible for important experimentally-observed features of the reaction.},
doi = {10.1039/c5cp05713b},
journal = {Physical Chemistry Chemical Physics. PCCP (Print)},
number = 3,
volume = 18,
place = {United States},
year = {2015},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 21 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Modeling Ionic Liquids Using a Systematic All-Atom Force Field
journal, February 2004

  • Canongia Lopes, José N.; Deschamps, Johnny; Pádua, Agílio A. H.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 6
  • DOI: 10.1021/jp0362133

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Density‐functional thermochemistry. III. The role of exact exchange
journal, April 1993

  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 98, Issue 7, p. 5648-5652
  • DOI: 10.1063/1.464913

A molecular dynamics method for simulations in the canonical ensemble
journal, June 1984


Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids
journal, January 1996

  • Jorgensen, William L.; Maxwell, David S.; Tirado-Rives, Julian
  • Journal of the American Chemical Society, Vol. 118, Issue 45
  • DOI: 10.1021/ja9621760

Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]
journal, February 1997


Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
journal, January 1988


The influence of polarization functions on molecular orbital hydrogenation energies
journal, January 1973

  • Hariharan, P. C.; Pople, J. A.
  • Theoretica Chimica Acta, Vol. 28, Issue 3
  • DOI: 10.1007/BF00533485

Raman spectroscopy and ab initio investigations of transient complex formation in CO2-benzene mixtures
journal, December 2008

  • Besnard, M.; Cabaço, M. Isabel; Talaga, D.
  • The Journal of Chemical Physics, Vol. 129, Issue 22
  • DOI: 10.1063/1.3037025

Phase behavior of {carbon dioxide+[bmim][Ac]} mixtures
journal, January 2008

  • Shiflett, Mark B.; Kasprzak, Daniel J.; Junk, Christopher P.
  • The Journal of Chemical Thermodynamics, Vol. 40, Issue 1
  • DOI: 10.1016/j.jct.2007.06.003

On the spontaneous carboxylation of 1-butyl-3-methylimidazolium acetate by carbon dioxide
journal, January 2012

  • Besnard, Marcel; Cabaço, M. Isabel; Chávez, Fabián Vaca
  • Chem. Commun., Vol. 48, Issue 9
  • DOI: 10.1039/C1CC16702B

GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation
journal, February 2008

  • Hess, Berk; Kutzner, Carsten; van der Spoel, David
  • Journal of Chemical Theory and Computation, Vol. 4, Issue 3
  • DOI: 10.1021/ct700301q

Solubility of H 2 in the Ionic Liquid [hmim][Tf 2 N]
journal, July 2006

  • Kumełan, Jacek; Pérez-Salado Kamps, Álvaro; Tuma, Dirk
  • Journal of Chemical & Engineering Data, Vol. 51, Issue 4
  • DOI: 10.1021/je060087p

An organocatalytic ionic liquid
journal, January 2011

  • Kelemen, Zsolt; Hollóczki, Oldamur; Nagy, József
  • Organic & Biomolecular Chemistry, Vol. 9, Issue 15
  • DOI: 10.1039/c1ob05639e

Why Is CO 2 So Soluble in Imidazolium-Based Ionic Liquids?
journal, April 2004

  • Cadena, Cesar; Anthony, Jennifer L.; Shah, Jindal K.
  • Journal of the American Chemical Society, Vol. 126, Issue 16
  • DOI: 10.1021/ja039615x

CO 2 in 1-Butyl-3-methylimidazolium Acetate. 2. NMR Investigation of Chemical Reactions
journal, May 2012

  • Besnard, Marcel; Cabaço, M. Isabel; Vaca Chávez, Fabián
  • The Journal of Physical Chemistry A, Vol. 116, Issue 20
  • DOI: 10.1021/jp211689z

Toward reliable density functional methods without adjustable parameters: The PBE0 model
journal, April 1999

  • Adamo, Carlo; Barone, Vincenzo
  • The Journal of Chemical Physics, Vol. 110, Issue 13
  • DOI: 10.1063/1.478522

Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
journal, January 1989

  • Dunning, Thom H.
  • The Journal of Chemical Physics, Vol. 90, Issue 2
  • DOI: 10.1063/1.456153

Polymorphic transitions in single crystals: A new molecular dynamics method
journal, December 1981

  • Parrinello, M.; Rahman, A.
  • Journal of Applied Physics, Vol. 52, Issue 12
  • DOI: 10.1063/1.328693

Solubility of CO 2 in 1-Butyl-3-methyl-imidazolium-trifluoro Acetate Ionic Liquid Studied by Raman Spectroscopy and DFT Investigations
journal, April 2011

  • Cabaço, M. Isabel; Besnard, M.; Danten, Y.
  • The Journal of Physical Chemistry B, Vol. 115, Issue 13
  • DOI: 10.1021/jp111453a

Carbon Dioxide in 1-Butyl-3-methylimidazolium Acetate. I. Unusual Solubility Investigated by Raman Spectroscopy and DFT Calculations
journal, February 2012

  • Cabaço, M. Isabel; Besnard, M.; Danten, Y.
  • The Journal of Physical Chemistry A, Vol. 116, Issue 6
  • DOI: 10.1021/jp211211n

Reaction of elemental chalcogens with imidazolium acetates to yield imidazole-2-chalcogenones: direct evidence for ionic liquids as proto-carbenes
journal, January 2011

  • Rodríguez, Héctor; Gurau, Gabriela; Holbrey, John D.
  • Chemical Communications, Vol. 47, Issue 11
  • DOI: 10.1039/c0cc05223j

Ab Initio Calculations of the Interaction between CO 2 and the Acetate Ion
journal, November 2012

  • Steckel, Janice A.
  • The Journal of Physical Chemistry A, Vol. 116, Issue 47
  • DOI: 10.1021/jp306446d

Probing anion–carbon dioxide interactions in room temperature ionic liquids: Gas phase cluster calculations
journal, August 2007


Canonical dynamics: Equilibrium phase-space distributions
journal, March 1985


Demonstration of Chemisorption of Carbon Dioxide in 1,3-Dialkylimidazolium Acetate Ionic Liquids
journal, October 2011

  • Gurau, Gabriela; Rodríguez, Héctor; Kelley, Steven P.
  • Angewandte Chemie International Edition, Vol. 50, Issue 50
  • DOI: 10.1002/anie.201105198

Theoretical and Experimental Studies of CO 2 and H 2 Separation Using the 1-Ethyl-3-methylimidazolium Acetate ([emim][CH 3 COO]) Ionic Liquid
journal, December 2011

  • Shi, Wei; Myers, Christina R.; Luebke, David R.
  • The Journal of Physical Chemistry B, Vol. 116, Issue 1
  • DOI: 10.1021/jp205830d

Correction of the basis set superposition error in SCF and MP2 interaction energies. The water dimer
journal, June 1986

  • Szczȩśniak, M. M.; Scheiner, Steve
  • The Journal of Chemical Physics, Vol. 84, Issue 11
  • DOI: 10.1063/1.450725

The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors
journal, October 1970


Phase Behavior of CO 2 in Room-Temperature Ionic Liquid 1-Ethyl-3-Ethylimidazolium Acetate
journal, April 2012

  • Shiflett, Mark B.; Elliott, Beth A.; Lustig, Steve R.
  • ChemPhysChem, Vol. 13, Issue 7
  • DOI: 10.1002/cphc.201200023

A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
journal, April 2010

  • Grimme, Stefan; Antony, Jens; Ehrlich, Stephan
  • The Journal of Chemical Physics, Vol. 132, Issue 15
  • DOI: 10.1063/1.3382344

Non-empirical molecular orbital calculations on the protonation of carbon monoxide
journal, March 1969


Carbene Formation in Ionic Liquids: Spontaneous, Induced, or Prohibited?
journal, May 2013

  • Hollóczki, Oldamur; Firaha, Dzmitry S.; Friedrich, Joachim
  • The Journal of Physical Chemistry B, Vol. 117, Issue 19
  • DOI: 10.1021/jp4004399

Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules
journal, March 1972

  • Hehre, W. J.; Ditchfield, R.; Pople, J. A.
  • The Journal of Chemical Physics, Vol. 56, Issue 5, p. 2257-2261
  • DOI: 10.1063/1.1677527

    Works referencing / citing this record:

    Delineation of the Critical Parameters of Salt Catalysts in the N Formylation of Amines with CO 2
    journal, September 2009

    • Hulla, Martin; Ortiz, Daniel; Katsyuba, Sergey
    • Chemistry – A European Journal, Vol. 25, Issue 47
    • DOI: 10.1002/chem.201901686

    Delineation of the Critical Parameters of Salt Catalysts in the N Formylation of Amines with CO 2
    journal, September 2009

    • Hulla, Martin; Ortiz, Daniel; Katsyuba, Sergey
    • Chemistry – A European Journal, Vol. 25, Issue 47
    • DOI: 10.1002/chem.201901686