DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An Electron/Ion Dual‐Conductive Alloy Framework for High‐Rate and High‐Capacity Solid‐State Lithium‐Metal Batteries

Abstract

Abstract The solid‐state Li battery is a promising energy‐storage system that is both safe and features a high energy density. A main obstacle to its application is the poor interface contact between the solid electrodes and the ceramic electrolyte. Surface treatment methods have been proposed to improve the interface of the ceramic electrolytes, but they are generally limited to low‐capacity or short‐term cycling. Herein, an electron/ion dual‐conductive solid framework is proposed by partially dealloying the Li–Mg alloy anode on a garnet‐type solid‐state electrolyte. The Li–Mg alloy framework serves as a solid electron/ion dual‐conductive Li host during cell cycling, in which the Li metal can cycle as a Li‐rich or Li‐deficient alloy anode, free from interface deterioration or volume collapse. Thus, the capacity, current density, and cycle life of the solid Li anode are improved. The cycle capability of this solid anode is demonstrated by cycling for 500 h at 1 mA cm −2 , followed by another 500 h at 2 mA cm −2 without short‐circuiting, realizing a record high cumulative capacity of 750 mA h cm −2 for garnet‐type all‐solid‐state Li batteries. This alloy framework with electron/ion dual‐conductive pathways creates the possibility to realize high‐energy solid‐state Li batteries withmore » extended lifespans.« less

Authors:
ORCiD logo [1];  [1];  [1];  [1];  [1];  [2];  [1];  [1];  [1]; ORCiD logo [1]
  1. Department of Materials Science and Engineering University of Maryland at College Park College Park MD 20742 USA
  2. Advanced Imaging and Microscopy (AIM) Lab of Nano Center University of Maryland at College Park College Park MD 20742 USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1483025
Grant/Contract Number:  
DE‐AR0000384
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Name: Advanced Materials Journal Volume: 31 Journal Issue: 3; Journal ID: ISSN 0935-9648
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Yang, Chunpeng, Xie, Hua, Ping, Weiwei, Fu, Kun, Liu, Boyang, Rao, Jiancun, Dai, Jiaqi, Wang, Chengwei, Pastel, Glenn, and Hu, Liangbing. An Electron/Ion Dual‐Conductive Alloy Framework for High‐Rate and High‐Capacity Solid‐State Lithium‐Metal Batteries. Germany: N. p., 2018. Web. doi:10.1002/adma.201804815.
Yang, Chunpeng, Xie, Hua, Ping, Weiwei, Fu, Kun, Liu, Boyang, Rao, Jiancun, Dai, Jiaqi, Wang, Chengwei, Pastel, Glenn, & Hu, Liangbing. An Electron/Ion Dual‐Conductive Alloy Framework for High‐Rate and High‐Capacity Solid‐State Lithium‐Metal Batteries. Germany. https://doi.org/10.1002/adma.201804815
Yang, Chunpeng, Xie, Hua, Ping, Weiwei, Fu, Kun, Liu, Boyang, Rao, Jiancun, Dai, Jiaqi, Wang, Chengwei, Pastel, Glenn, and Hu, Liangbing. Wed . "An Electron/Ion Dual‐Conductive Alloy Framework for High‐Rate and High‐Capacity Solid‐State Lithium‐Metal Batteries". Germany. https://doi.org/10.1002/adma.201804815.
@article{osti_1483025,
title = {An Electron/Ion Dual‐Conductive Alloy Framework for High‐Rate and High‐Capacity Solid‐State Lithium‐Metal Batteries},
author = {Yang, Chunpeng and Xie, Hua and Ping, Weiwei and Fu, Kun and Liu, Boyang and Rao, Jiancun and Dai, Jiaqi and Wang, Chengwei and Pastel, Glenn and Hu, Liangbing},
abstractNote = {Abstract The solid‐state Li battery is a promising energy‐storage system that is both safe and features a high energy density. A main obstacle to its application is the poor interface contact between the solid electrodes and the ceramic electrolyte. Surface treatment methods have been proposed to improve the interface of the ceramic electrolytes, but they are generally limited to low‐capacity or short‐term cycling. Herein, an electron/ion dual‐conductive solid framework is proposed by partially dealloying the Li–Mg alloy anode on a garnet‐type solid‐state electrolyte. The Li–Mg alloy framework serves as a solid electron/ion dual‐conductive Li host during cell cycling, in which the Li metal can cycle as a Li‐rich or Li‐deficient alloy anode, free from interface deterioration or volume collapse. Thus, the capacity, current density, and cycle life of the solid Li anode are improved. The cycle capability of this solid anode is demonstrated by cycling for 500 h at 1 mA cm −2 , followed by another 500 h at 2 mA cm −2 without short‐circuiting, realizing a record high cumulative capacity of 750 mA h cm −2 for garnet‐type all‐solid‐state Li batteries. This alloy framework with electron/ion dual‐conductive pathways creates the possibility to realize high‐energy solid‐state Li batteries with extended lifespans.},
doi = {10.1002/adma.201804815},
journal = {Advanced Materials},
number = 3,
volume = 31,
place = {Germany},
year = {Wed Nov 21 00:00:00 EST 2018},
month = {Wed Nov 21 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/adma.201804815

Citation Metrics:
Cited by: 179 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Complex Hydrides with (BH 4 ) and (NH 2 ) Anions as New Lithium Fast-Ion Conductors
journal, November 2009

  • Matsuo, Motoaki; Remhof, Arndt; Martelli, Pascal
  • Journal of the American Chemical Society, Vol. 131, Issue 45
  • DOI: 10.1021/ja907249p

Negating interfacial impedance in garnet-based solid-state Li metal batteries
journal, December 2016

  • Han, Xiaogang; Gong, Yunhui; Fu, Kun (Kelvin)
  • Nature Materials, Vol. 16, Issue 5
  • DOI: 10.1038/nmat4821

High conductive yttrium doped Li7La3Zr2O12 cubic lithium garnet
journal, December 2011


Nanoporous Polymer-Ceramic Composite Electrolytes for Lithium Metal Batteries
journal, September 2013

  • Tu, Zhengyuan; Kambe, Yu; Lu, Yingying
  • Advanced Energy Materials, Vol. 4, Issue 2, Article No. 1300654
  • DOI: 10.1002/aenm.201300654

Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires
journal, April 2017


Solid-State Lithium Metal Batteries Promoted by Nanotechnology: Progress and Prospects
journal, May 2017


Transient Behavior of the Metal Interface in Lithium Metal-Garnet Batteries
journal, October 2017

  • Fu, Kun Kelvin; Gong, Yunhui; Fu, Zhezhen
  • Angewandte Chemie International Edition, Vol. 56, Issue 47
  • DOI: 10.1002/anie.201708637

Lithium Ion Conductivity of A-Site Deficient Perovskite Solid Solution La[sub 0.67−x]Li[sub 3x]TiO[sub 3]
journal, January 1994

  • Kawai, Hiroo
  • Journal of The Electrochemical Society, Vol. 141, Issue 7
  • DOI: 10.1149/1.2055043

Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations
journal, October 2015

  • Zhu, Yizhou; He, Xingfeng; Mo, Yifei
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 42
  • DOI: 10.1021/acsami.5b07517

A solid future for battery development
journal, September 2016


Li 7 La 3 Zr 2 O 12 Interface Modification for Li Dendrite Prevention
journal, April 2016

  • Tsai, Chih-Long; Roddatis, Vladimir; Chandran, C. Vinod
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 16
  • DOI: 10.1021/acsami.6b00831

Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Particle Morphology and Lithium Segregation to Surfaces of the Li 7 La 3 Zr 2 O 12 Solid Electrolyte
journal, April 2018


Suppression of Lithium Dendrite Growth Using Cross-Linked Polyethylene/Poly(ethylene oxide) Electrolytes: A New Approach for Practical Lithium-Metal Polymer Batteries
journal, May 2014

  • Khurana, Rachna; Schaefer, Jennifer L.; Archer, Lynden A.
  • Journal of the American Chemical Society, Vol. 136, Issue 20
  • DOI: 10.1021/ja502133j

Mastering the interface for advanced all-solid-state lithium rechargeable batteries
journal, November 2016

  • Li, Yutao; Zhou, Weidong; Chen, Xi
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 47
  • DOI: 10.1073/pnas.1615912113

SiO 2 Hollow Nanosphere-Based Composite Solid Electrolyte for Lithium Metal Batteries to Suppress Lithium Dendrite Growth and Enhance Cycle Life
journal, January 2016

  • Zhou, Dong; Liu, Ruliang; He, Yan-Bing
  • Advanced Energy Materials, Vol. 6, Issue 7
  • DOI: 10.1002/aenm.201502214

Conformal, Nanoscale ZnO Surface Modification of Garnet-Based Solid-State Electrolyte for Lithium Metal Anodes
journal, December 2016


Glass–ceramic Li2S–P2S5 electrolytes prepared by a single step ball billing process and their application for all-solid-state lithium–ion batteries
journal, September 2009


An Iodide-Based Li 7 P 2 S 8 I Superionic Conductor
journal, January 2015

  • Rangasamy, Ezhiylmurugan; Liu, Zengcai; Gobet, Mallory
  • Journal of the American Chemical Society, Vol. 137, Issue 4
  • DOI: 10.1021/ja508723m

Suppressing Li Dendrite Formation in Li 2 S-P 2 S 5 Solid Electrolyte by LiI Incorporation
journal, March 2018

  • Han, Fudong; Yue, Jie; Zhu, Xiangyang
  • Advanced Energy Materials, Vol. 8, Issue 18
  • DOI: 10.1002/aenm.201703644

Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte
journal, September 2016

  • Luo, Wei; Gong, Yunhui; Zhu, Yizhou
  • Journal of the American Chemical Society, Vol. 138, Issue 37
  • DOI: 10.1021/jacs.6b06777

Garnet Electrolyte with an Ultralow Interfacial Resistance for Li-Metal Batteries
journal, April 2018

  • Li, Yutao; Chen, Xi; Dolocan, Andrei
  • Journal of the American Chemical Society, Vol. 140, Issue 20
  • DOI: 10.1021/jacs.8b03106

Protected Lithium-Metal Anodes in Batteries: From Liquid to Solid
journal, July 2017


Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface
journal, October 2017


Design principles for electrolytes and interfaces for stable lithium-metal batteries
journal, September 2016


Alloy Negative Electrodes for Li-Ion Batteries
journal, October 2014

  • Obrovac, M. N.; Chevrier, V. L.
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500207g

Lithium-ion conductive ceramic textile: A new architecture for flexible solid-state lithium metal batteries
journal, July 2018


Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review
journal, July 2017


Garnet-type solid-state fast Li ion conductors for Li batteries: critical review
journal, January 2014

  • Thangadurai, Venkataraman; Narayanan, Sumaletha; Pinzaru, Dana
  • Chemical Society Reviews, Vol. 43, Issue 13
  • DOI: 10.1039/c4cs00020j

The ternary Gd-Li-Mg system: Phase diagram study and computational evaluation
journal, January 2001


Lithium Metal Anodes: Toward an Improved Understanding of Coupled Morphological, Electrochemical, and Mechanical Behavior
journal, February 2017


Interface Stability in Solid-State Batteries
journal, December 2015


Surface Chemistry Mechanism of Ultra-Low Interfacial Resistance in the Solid-State Electrolyte Li 7 La 3 Zr 2 O 12
journal, September 2017


Hybrid Electrolytes with Controlled Network Structures for Lithium Metal Batteries
journal, August 2015


Promise and reality of post-lithium-ion batteries with high energy densities
journal, March 2016


Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

Atomic-Scale Influence of Grain Boundaries on Li-Ion Conduction in Solid Electrolytes for All-Solid-State Batteries
journal, December 2017

  • Dawson, James A.; Canepa, Pieremanuele; Famprikis, Theodosios
  • Journal of the American Chemical Society, Vol. 140, Issue 1
  • DOI: 10.1021/jacs.7b10593

Interfacial Chemistry in Solid-State Batteries: Formation of Interphase and Its Consequences
journal, December 2017

  • Wang, Shaofei; Xu, Henghui; Li, Wangda
  • Journal of the American Chemical Society, Vol. 140, Issue 1
  • DOI: 10.1021/jacs.7b09531

Universal Soldering of Lithium and Sodium Alloys on Various Substrates for Batteries
journal, October 2017


Novel Fast Lithium Ion Conduction in Garnet-Type Li 5 La 3 M 2 O 12 (M = Nb, Ta)
journal, March 2003


Anomalous High Ionic Conductivity of Nanoporous β-Li3PS4
journal, January 2013

  • Liu, Zengcai; Fu, Wujun; Payzant, E. Andrew
  • Journal of the American Chemical Society, Vol. 135, Issue 3, p. 975-978
  • DOI: 10.1021/ja3110895

Lithium battery chemistries enabled by solid-state electrolytes
journal, February 2017


A Lithium Amide-Borohydride Solid-State Electrolyte with Lithium-Ion Conductivities Comparable to Liquid Electrolytes
journal, June 2017

  • Yan, Yigang; Kühnel, Ruben-Simon; Remhof, Arndt
  • Advanced Energy Materials, Vol. 7, Issue 19
  • DOI: 10.1002/aenm.201700294

Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal
journal, September 2014