DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hard Carbon as Sodium‐Ion Battery Anodes: Progress and Challenges

Abstract

Abstract Hard carbon (HC) is the state‐of‐the‐art anode material for sodium‐ion batteries due to its excellent overall performance, wide availability, and relatively low cost. Recently, tremendous effort has been invested to elucidate the sodium storage mechanism in HC, and to explore synthetic approaches that can enhance the performance and lower the cost. However, disagreements remain in the field, particularly on the fundamental questions of ion transfer and storage and the ideal HC structure for high performance. This Minireview aims to provide an analysis and summary of the theoretical limitations of HC, discrepancies in the storage mechanism, and methods to improve the performance. Finally, future research on developing ideal structured HCs, advanced electrolytes, and optimized electrolyte–electrode interphases are proposed on the basis of recent progress.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [1]
  1. Energy &, Environment Directorate Pacific Northwest National Laboratory Richland WA 99352 USA
  2. CIC energiGUNE Parque Tecnológico de Álava C/ Albert Einstein 48 01510 Miñano Spain, Departamento de Química Inorgánica Universidad del País Vasco UPV/EHU P.O. Box 664 48080 Leioa Spain
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1483022
Grant/Contract Number:  
70247A
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
ChemSusChem
Additional Journal Information:
Journal Name: ChemSusChem Journal Volume: 12 Journal Issue: 1; Journal ID: ISSN 1864-5631
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Xiao, Biwei, Rojo, Teófilo, and Li, Xiaolin. Hard Carbon as Sodium‐Ion Battery Anodes: Progress and Challenges. Germany: N. p., 2018. Web. doi:10.1002/cssc.201801879.
Xiao, Biwei, Rojo, Teófilo, & Li, Xiaolin. Hard Carbon as Sodium‐Ion Battery Anodes: Progress and Challenges. Germany. https://doi.org/10.1002/cssc.201801879
Xiao, Biwei, Rojo, Teófilo, and Li, Xiaolin. Wed . "Hard Carbon as Sodium‐Ion Battery Anodes: Progress and Challenges". Germany. https://doi.org/10.1002/cssc.201801879.
@article{osti_1483022,
title = {Hard Carbon as Sodium‐Ion Battery Anodes: Progress and Challenges},
author = {Xiao, Biwei and Rojo, Teófilo and Li, Xiaolin},
abstractNote = {Abstract Hard carbon (HC) is the state‐of‐the‐art anode material for sodium‐ion batteries due to its excellent overall performance, wide availability, and relatively low cost. Recently, tremendous effort has been invested to elucidate the sodium storage mechanism in HC, and to explore synthetic approaches that can enhance the performance and lower the cost. However, disagreements remain in the field, particularly on the fundamental questions of ion transfer and storage and the ideal HC structure for high performance. This Minireview aims to provide an analysis and summary of the theoretical limitations of HC, discrepancies in the storage mechanism, and methods to improve the performance. Finally, future research on developing ideal structured HCs, advanced electrolytes, and optimized electrolyte–electrode interphases are proposed on the basis of recent progress.},
doi = {10.1002/cssc.201801879},
journal = {ChemSusChem},
number = 1,
volume = 12,
place = {Germany},
year = {Wed Nov 21 00:00:00 EST 2018},
month = {Wed Nov 21 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/cssc.201801879

Citation Metrics:
Cited by: 202 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors
journal, January 2015

  • Ding, Jia; Wang, Huanlei; Li, Zhi
  • Energy & Environmental Science, Vol. 8, Issue 3, p. 941-955
  • DOI: 10.1039/C4EE02986K

Hard Carbon Microtubes Made from Renewable Cotton as High-Performance Anode Material for Sodium-Ion Batteries
journal, June 2016

  • Li, Yunming; Hu, Yong-Sheng; Titirici, Maria-Magdalena
  • Advanced Energy Materials, Vol. 6, Issue 18
  • DOI: 10.1002/aenm.201600659

Facile synthesis of high performance hard carbon anode materials for sodium ion batteries
journal, January 2015

  • Sun, Ning; Liu, Huan; Xu, Bin
  • Journal of Materials Chemistry A, Vol. 3, Issue 41
  • DOI: 10.1039/C5TA05118E

Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard-Carbon Electrodes and Application to Na-Ion Batteries
journal, August 2011

  • Komaba, Shinichi; Murata, Wataru; Ishikawa, Toru
  • Advanced Functional Materials, Vol. 21, Issue 20
  • DOI: 10.1002/adfm.201100854

Comprehensive Insights into the Reactivity of Electrolytes Based on Sodium Ions
journal, February 2016

  • Eshetu, Gebrekidan Gebresilassie; Grugeon, Sylvie; Kim, Huikyong
  • ChemSusChem, Vol. 9, Issue 5
  • DOI: 10.1002/cssc.201501605

Elucidation of the Sodium-Storage Mechanism in Hard Carbons
journal, February 2018

  • Bai, Panxing; He, Yongwu; Zou, Xiaoxi
  • Advanced Energy Materials, Vol. 8, Issue 15
  • DOI: 10.1002/aenm.201703217

Synthesis of hard carbon from argan shells for Na-ion batteries
journal, January 2017

  • Dahbi, Mouad; Kiso, Manami; Kubota, Kei
  • Journal of Materials Chemistry A, Vol. 5, Issue 20
  • DOI: 10.1039/C7TA01394A

Use of Graphite as a Highly Reversible Electrode with Superior Cycle Life for Sodium-Ion Batteries by Making Use of Co-Intercalation Phenomena
journal, July 2014

  • Jache, Birte; Adelhelm, Philipp
  • Angewandte Chemie International Edition, Vol. 53, Issue 38
  • DOI: 10.1002/anie.201403734

Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements
journal, September 2014


Electrolyte design strategies and research progress for room-temperature sodium-ion batteries
journal, January 2017

  • Che, Haiying; Chen, Suli; Xie, Yingying
  • Energy & Environmental Science, Vol. 10, Issue 5
  • DOI: 10.1039/C7EE00524E

Insertion Electrode Materials for Rechargeable Lithium Batteries
journal, July 1998


Lithium-Pretreated Hard Carbon as High-Performance Sodium-Ion Battery Anodes
journal, July 2018

  • Xiao, Biwei; Soto, Fernando A.; Gu, Meng
  • Advanced Energy Materials, Vol. 8, Issue 24
  • DOI: 10.1002/aenm.201801441

Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: towards practical applications
journal, October 2016


Mechanistic insights into sodium storage in hard carbon anodes using local structure probes
journal, January 2016

  • Stratford, Joshua M.; Allan, Phoebe K.; Pecher, Oliver
  • Chemical Communications, Vol. 52, Issue 84
  • DOI: 10.1039/C6CC06990H

Natriumionenbatterien für die elektrochemische Energiespeicherung
journal, February 2015

  • Kundu, Dipan; Talaie, Elahe; Duffort, Victor
  • Angewandte Chemie, Vol. 127, Issue 11
  • DOI: 10.1002/ange.201410376

High Capacity Anode Materials for Rechargeable Sodium-Ion Batteries
journal, January 2000

  • Stevens, D. A.; Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 147, Issue 4
  • DOI: 10.1149/1.1393348

Correlation Between Lithium Intercalation Capacity and Microstructure in Hard Carbons
journal, January 1996

  • Xing, Weibing
  • Journal of The Electrochemical Society, Vol. 143, Issue 11
  • DOI: 10.1149/1.1837241

Sodium Storage Behavior in Natural Graphite using Ether-based Electrolyte Systems
journal, November 2014

  • Kim, Haegyeom; Hong, Jihyun; Park, Young-Uk
  • Advanced Functional Materials, Vol. 25, Issue 4
  • DOI: 10.1002/adfm.201402984

Low-Surface-Area Hard Carbon Anode for Na-Ion Batteries via Graphene Oxide as a Dehydration Agent
journal, January 2015

  • Luo, Wei; Bommier, Clement; Jian, Zelang
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 4
  • DOI: 10.1021/am507679x

S-Doped N-Rich Carbon Nanosheets with Expanded Interlayer Distance as Anode Materials for Sodium-Ion Batteries
journal, November 2016


Sulfur-Doped Carbon with Enlarged Interlayer Distance as a High-Performance Anode Material for Sodium-Ion Batteries
journal, August 2015


Recent Progress in Graphite Intercalation Compounds for Rechargeable Metal (Li, Na, K, Al)-Ion Batteries
journal, June 2017


Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins
journal, January 1996


Carbonized-leaf Membrane with Anisotropic Surfaces for Sodium-ion Battery
journal, January 2016

  • Li, Hongbian; Shen, Fei; Luo, Wei
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 3
  • DOI: 10.1021/acsami.5b10875

Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


Hard Carbons for Sodium-Ion Battery Anodes: Synthetic Strategies, Material Properties, and Storage Mechanisms
journal, January 2018


Large-Area Carbon Nanosheets Doped with Phosphorus: A High-Performance Anode Material for Sodium-Ion Batteries
journal, September 2016


Sodium-Ion Batteries: From Academic Research to Practical Commercialization
journal, September 2017

  • Deng, Jianqiu; Luo, Wen-Bin; Chou, Shu-Lei
  • Advanced Energy Materials, Vol. 8, Issue 4
  • DOI: 10.1002/aenm.201701428

A tension strength behaviour of lattice structure made by 3D-printer
journal, January 2016

  • Fujimoto, Takayuki; Kusunoki, Itaru; Kitamura, Yoshiyuki
  • The Proceedings of Mechanical Engineering Congress, Japan, Vol. 2016, Issue 0
  • DOI: 10.1299/jsmemecj.2016.G0300703

Electrochemical intercalation of sodium in graphite
journal, September 1988


Interphases in Sodium-Ion Batteries
journal, March 2018

  • Song, Junhua; Xiao, Biwei; Lin, Yuehe
  • Advanced Energy Materials, Vol. 8, Issue 17
  • DOI: 10.1002/aenm.201703082

Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals
journal, March 2016

  • Liu, Yuanyue; Merinov, Boris V.; Goddard, William A.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 14
  • DOI: 10.1073/pnas.1602473113

Nitrogen-Rich Mesoporous Carbon as Anode Material for High-Performance Sodium-Ion Batteries
journal, December 2015

  • Liu, Huan; Jia, Mengqiu; Sun, Ning
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 49
  • DOI: 10.1021/acsami.5b06898

Research Development on Sodium-Ion Batteries
journal, October 2014

  • Yabuuchi, Naoaki; Kubota, Kei; Dahbi, Mouad
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500192f

Density Functional Theory Calculations of Alkali Metal (Li, Na, and K) Graphite Intercalation Compounds
journal, December 2013

  • Okamoto, Yasuharu
  • The Journal of Physical Chemistry C, Vol. 118, Issue 1
  • DOI: 10.1021/jp4063753

High Capacity of Hard Carbon Anode in Na-Ion Batteries Unlocked by PO x Doping
journal, July 2016


Solubility of the Solid Electrolyte Interphase (SEI) in Sodium Ion Batteries
journal, November 2016


Carbon Anode Materials for Advanced Sodium-Ion Batteries
journal, March 2017

  • Hou, Hongshuai; Qiu, Xiaoqing; Wei, Weifeng
  • Advanced Energy Materials, Vol. 7, Issue 24
  • DOI: 10.1002/aenm.201602898

The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage
journal, February 2015

  • Kundu, Dipan; Talaie, Elahe; Duffort, Victor
  • Angewandte Chemie International Edition, Vol. 54, Issue 11
  • DOI: 10.1002/anie.201410376

High-Density Sodium and Lithium Ion Battery Anodes from Banana Peels
journal, June 2014

  • Lotfabad, Elmira Memarzadeh; Ding, Jia; Cui, Kai
  • ACS Nano, Vol. 8, Issue 7, p. 7115-7129
  • DOI: 10.1021/nn502045y

Surface Layer Evolution on Graphite During Electrochemical Sodium-tetraglyme Co-intercalation
journal, March 2017

  • Maibach, Julia; Jeschull, Fabian; Brandell, Daniel
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 14
  • DOI: 10.1021/acsami.6b16536

Low-Defect and Low-Porosity Hard Carbon with High Coulombic Efficiency and High Capacity for Practical Sodium Ion Battery Anode
journal, March 2018

  • Xiao, Lifen; Lu, Haiyan; Fang, Yongjin
  • Advanced Energy Materials, Vol. 8, Issue 20
  • DOI: 10.1002/aenm.201703238

Mechanism of Na-Ion Storage in Hard Carbon Anodes Revealed by Heteroatom Doping
journal, May 2017

  • Li, Zhifei; Bommier, Clement; Chong, Zhi Sen
  • Advanced Energy Materials, Vol. 7, Issue 18
  • DOI: 10.1002/aenm.201602894

Von Lithium- zu Natriumionenbatterien: Vorteile, Herausforderungen und Überraschendes
journal, November 2017

  • Nayak, Prasant Kumar; Yang, Liangtao; Brehm, Wolfgang
  • Angewandte Chemie, Vol. 130, Issue 1
  • DOI: 10.1002/ange.201703772

Defective Hard Carbon Anode for Na-Ion Batteries
journal, June 2018


Manipulating Adsorption-Insertion Mechanisms in Nanostructured Carbon Materials for High-Efficiency Sodium Ion Storage
journal, May 2017

  • Qiu, Shen; Xiao, Lifen; Sushko, Maria L.
  • Advanced Energy Materials, Vol. 7, Issue 17
  • DOI: 10.1002/aenm.201700403

Insights on the Na+ ion storage mechanism in hard carbon: Discrimination between the porosity, surface functional groups and defects
journal, February 2018


Carbon Nanosheet Frameworks Derived from Peat Moss as High Performance Sodium Ion Battery Anodes
journal, November 2013

  • Ding, Jia; Wang, Huanlei; Li, Zhi
  • ACS Nano, Vol. 7, Issue 12
  • DOI: 10.1021/nn404640c

Prelithiation of Silicon–Carbon Nanotube Anodes for Lithium Ion Batteries by Stabilized Lithium Metal Powder (SLMP)
journal, August 2013

  • Forney, Michael W.; Ganter, Matthew J.; Staub, Jason W.
  • Nano Letters, Vol. 13, Issue 9, p. 4158-4163
  • DOI: 10.1021/nl401776d

Research Update: Hard carbon with closed pores from pectin-free apple pomace waste for Na-ion batteries
journal, April 2018

  • Dou, Xinwei; Geng, Chenxi; Buchholz, Daniel
  • APL Materials, Vol. 6, Issue 4
  • DOI: 10.1063/1.5013132

Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase
journal, January 2017

  • Zhang, Jun; Wang, Da-Wei; Lv, Wei
  • Energy & Environmental Science, Vol. 10, Issue 1
  • DOI: 10.1039/C6EE03367A

Conditions for Reversible Na Intercalation in Graphite: Theoretical Studies on the Interplay Among Guest Ions, Solvent, and Graphite Host
journal, September 2016

  • Yoon, Gabin; Kim, Haegyeom; Park, Inchul
  • Advanced Energy Materials, Vol. 7, Issue 2
  • DOI: 10.1002/aenm.201601519

Na-Ion Battery Anodes: Materials and Electrochemistry
journal, January 2016


Expanded graphite as superior anode for sodium-ion batteries
journal, June 2014

  • Wen, Yang; He, Kai; Zhu, Yujie
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5033

Insights into the Na + Storage Mechanism of Phosphorus-Functionalized Hard Carbon as Ultrahigh Capacity Anodes
journal, March 2018


A Hierarchical N/S-Codoped Carbon Anode Fabricated Facilely from Cellulose/Polyaniline Microspheres for High-Performance Sodium-Ion Batteries
journal, January 2016


Gelatin-pyrolyzed mesoporous carbon as a high-performance sodium-storage material
journal, January 2015

  • Guan, Zhaoruxin; Liu, Huan; Xu, Bin
  • Journal of Materials Chemistry A, Vol. 3, Issue 15
  • DOI: 10.1039/C5TA01446H

From Charge Storage Mechanism to Performance: A Roadmap toward High Specific Energy Sodium-Ion Batteries through Carbon Anode Optimization
journal, March 2018

  • Saurel, Damien; Orayech, Brahim; Xiao, Biwei
  • Advanced Energy Materials, Vol. 8, Issue 17
  • DOI: 10.1002/aenm.201703268

Routes to High Energy Cathodes of Sodium-Ion Batteries
journal, December 2015

  • Fang, Chun; Huang, Yunhui; Zhang, Wuxing
  • Advanced Energy Materials, Vol. 6, Issue 5
  • DOI: 10.1002/aenm.201501727

The importance of solid electrolyte interphase formation for long cycle stability full-cell Na-ion batteries
journal, September 2016


First-principles study of alkali metal-graphite intercalation compounds
journal, December 2013


Tuning the Solid Electrolyte Interphase for Selective Li- and Na-Ion Storage in Hard Carbon
journal, March 2017

  • Soto, Fernando A.; Yan, Pengfei; Engelhard, Mark H.
  • Advanced Materials, Vol. 29, Issue 18
  • DOI: 10.1002/adma.201606860

Biomass derived hard carbon used as a high performance anode material for sodium ion batteries
journal, January 2014

  • Hong, Kun-lei; Qie, Long; Zeng, Rui
  • Journal of Materials Chemistry A, Vol. 2, Issue 32
  • DOI: 10.1039/C4TA02068E

Sodium-ion batteries: present and future
journal, January 2017

  • Hwang, Jang-Yeon; Myung, Seung-Taek; Sun, Yang-Kook
  • Chemical Society Reviews, Vol. 46, Issue 12
  • DOI: 10.1039/C6CS00776G

Understanding Ionic Diffusion through SEI Components for Lithium-Ion and Sodium-Ion Batteries: Insights from First-Principles Calculations
journal, April 2018


From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises
journal, November 2017

  • Nayak, Prasant Kumar; Yang, Liangtao; Brehm, Wolfgang
  • Angewandte Chemie International Edition, Vol. 57, Issue 1
  • DOI: 10.1002/anie.201703772

New Mechanistic Insights on Na-Ion Storage in Nongraphitizable Carbon
journal, August 2015


Ab initio study of sodium intercalation into disordered carbon
journal, January 2015

  • Tsai, Ping-chun; Chung, Sai-Cheong; Lin, Shih-kang
  • Journal of Materials Chemistry A, Vol. 3, Issue 18
  • DOI: 10.1039/C5TA01443C

Correlation Between Cointercalation of Solvents and Electrochemical Intercalation of Lithium into Graphite in Propylene Carbonate Solution
journal, January 2003

  • Abe, Takeshi; Kawabata, Naoki; Mizutani, Yasuo
  • Journal of The Electrochemical Society, Vol. 150, Issue 3
  • DOI: 10.1149/1.1541004

Hard Carbon Anodes for Na-Ion Batteries: Toward a Practical Use
journal, October 2015

  • Hasegawa, George; Kanamori, Kazuyoshi; Kannari, Naokatsu
  • ChemElectroChem, Vol. 2, Issue 12
  • DOI: 10.1002/celc.201500412