DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Engineering of B800 bacteriochlorophyll binding site specificity in the Rhodobacter sphaeroides LH2 antenna

Abstract

The light-harvesting 2 complex (LH2) of the purple phototrophic bacterium Rhodobacter sphaeroides is a highly efficient, light-harvesting antenna that allows growth under a wide-range of light intensities. In order to expand the spectral range of this antenna complex, we first used a series of competition assays to measure the capacity of the non-native pigments 3-acetyl chlorophyll (Chl) a, Chl d, Chl f or bacteriochlorophyll (BChl) b to replace native BChl a in the B800 binding site of LH2. We then adjusted the B800 site and systematically assessed the binding of non-native pigments. We find that Arg–10 of the LH2 β polypeptide plays a crucial role in binding specificity, by providing a hydrogen-bond to the 3-acetyl group of native and non-native pigments. Reconstituted LH2 complexes harbouring the series of (B)Chls were examined by transient absorption and steady-state fluorescence spectroscopies. Although slowed 10-fold to ~6 ps, energy transfer from Chl a to B850 BChl a remained highly efficient. We measured faster energy-transfer time constants for Chl d (3.5 ps) and Chl f (2.7 ps), which have red-shifted absorption maxima compared to Chl a. BChl b, red-shifted from the native BChl a, gave extremely rapid (≤0.1 ps) transfer. These results show that modifiedmore » LH2 complexes, combined with engineered (B)Chl biosynthesis pathways in vivo, have potential for retaining high efficiency whilst acquiring increased spectral range.« less

Authors:
; ; ; ; ; ; ORCiD logo; ; ORCiD logo; ORCiD logo;
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Photosynthetic Antenna Research Center (PARC); Pennsylvania State Univ., University Park, PA (United States); Washington Univ., St. Louis, MO (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences, and Biosciences Division; Biotechnology and Biological Sciences Research Council (BBSRC); National Science Foundation (NSF); European Commission Marie Skłodowska-Curie Global Fellowship
OSTI Identifier:
1482755
Alternate Identifier(s):
OSTI ID: 1566431
Grant/Contract Number:  
SC0001035; FG02-94ER20137; BB/M000265/1
Resource Type:
Published Article
Journal Name:
Biochimica et Biophysica Acta - Bioenergetics
Additional Journal Information:
Journal Name: Biochimica et Biophysica Acta - Bioenergetics Journal Volume: 1860 Journal Issue: 3; Journal ID: ISSN 0005-2728
Publisher:
Elsevier
Country of Publication:
Netherlands
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; solar (fuels); photosynthesis (natural and artificial); biofuels (including algae and biomass); bio-inspired; charge transport; membrane; synthesis (novel materials); synthesis (self-assembly); Rhodobacter sphaeroides; LH2; bacteriochlorophyll; chlorophyll; light harvesting; ligand binding; protein engineering

Citation Formats

Swainsbury, David J. K., Faries, Kaitlyn M., Niedzwiedzki, Dariusz M., Martin, Elizabeth C., Flinders, Adam J., Canniffe, Daniel P., Shen, Gaozhong, Bryant, Donald A., Kirmaier, Christine, Holten, Dewey, and Hunter, C. Neil. Engineering of B800 bacteriochlorophyll binding site specificity in the Rhodobacter sphaeroides LH2 antenna. Netherlands: N. p., 2018. Web. doi:10.1016/j.bbabio.2018.11.008.
Swainsbury, David J. K., Faries, Kaitlyn M., Niedzwiedzki, Dariusz M., Martin, Elizabeth C., Flinders, Adam J., Canniffe, Daniel P., Shen, Gaozhong, Bryant, Donald A., Kirmaier, Christine, Holten, Dewey, & Hunter, C. Neil. Engineering of B800 bacteriochlorophyll binding site specificity in the Rhodobacter sphaeroides LH2 antenna. Netherlands. https://doi.org/10.1016/j.bbabio.2018.11.008
Swainsbury, David J. K., Faries, Kaitlyn M., Niedzwiedzki, Dariusz M., Martin, Elizabeth C., Flinders, Adam J., Canniffe, Daniel P., Shen, Gaozhong, Bryant, Donald A., Kirmaier, Christine, Holten, Dewey, and Hunter, C. Neil. Fri . "Engineering of B800 bacteriochlorophyll binding site specificity in the Rhodobacter sphaeroides LH2 antenna". Netherlands. https://doi.org/10.1016/j.bbabio.2018.11.008.
@article{osti_1482755,
title = {Engineering of B800 bacteriochlorophyll binding site specificity in the Rhodobacter sphaeroides LH2 antenna},
author = {Swainsbury, David J. K. and Faries, Kaitlyn M. and Niedzwiedzki, Dariusz M. and Martin, Elizabeth C. and Flinders, Adam J. and Canniffe, Daniel P. and Shen, Gaozhong and Bryant, Donald A. and Kirmaier, Christine and Holten, Dewey and Hunter, C. Neil},
abstractNote = {The light-harvesting 2 complex (LH2) of the purple phototrophic bacterium Rhodobacter sphaeroides is a highly efficient, light-harvesting antenna that allows growth under a wide-range of light intensities. In order to expand the spectral range of this antenna complex, we first used a series of competition assays to measure the capacity of the non-native pigments 3-acetyl chlorophyll (Chl) a, Chl d, Chl f or bacteriochlorophyll (BChl) b to replace native BChl a in the B800 binding site of LH2. We then adjusted the B800 site and systematically assessed the binding of non-native pigments. We find that Arg–10 of the LH2 β polypeptide plays a crucial role in binding specificity, by providing a hydrogen-bond to the 3-acetyl group of native and non-native pigments. Reconstituted LH2 complexes harbouring the series of (B)Chls were examined by transient absorption and steady-state fluorescence spectroscopies. Although slowed 10-fold to ~6 ps, energy transfer from Chl a to B850 BChl a remained highly efficient. We measured faster energy-transfer time constants for Chl d (3.5 ps) and Chl f (2.7 ps), which have red-shifted absorption maxima compared to Chl a. BChl b, red-shifted from the native BChl a, gave extremely rapid (≤0.1 ps) transfer. These results show that modified LH2 complexes, combined with engineered (B)Chl biosynthesis pathways in vivo, have potential for retaining high efficiency whilst acquiring increased spectral range.},
doi = {10.1016/j.bbabio.2018.11.008},
journal = {Biochimica et Biophysica Acta - Bioenergetics},
number = 3,
volume = 1860,
place = {Netherlands},
year = {Fri Nov 09 00:00:00 EST 2018},
month = {Fri Nov 09 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1016/j.bbabio.2018.11.008

Citation Metrics:
Cited by: 29 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The petite purple photosynthetic powerpack
journal, March 2009

  • Jones, Michael R.
  • Biochemical Society Transactions, Vol. 37, Issue 2
  • DOI: 10.1042/BST0370400

Identification of an 8-vinyl reductase involved in bacteriochlorophyll biosynthesis in Rhodobacter sphaeroides and evidence for the existence of a third distinct class of the enzyme
journal, February 2013

  • Canniffe, Daniel P.; Jackson, Philip J.; Hollingshead, Sarah
  • Biochemical Journal, Vol. 450, Issue 2
  • DOI: 10.1042/BJ20121723

A Second and Unusual pucBA Operon of Rhodobacter sphaeroides 2.4.1: Genetics and Function of the Encoded Polypeptides
journal, October 2003


Integration of energy and electron transfer processes in the photosynthetic membrane of Rhodobacter sphaeroides
journal, October 2014

  • Cartron, Michaël L.; Olsen, John D.; Sener, Melih
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1837, Issue 10
  • DOI: 10.1016/j.bbabio.2014.02.003

Projection structures of three photosynthetic complexes from Rhodobacter sphaeroides : LH2 at 6 Å, LH1 and RC-LH1 at 25 Å 1 1Edited by K. Nagai
journal, October 1998

  • Walz, Thomas; Jamieson, Stuart J.; Bowers, Claire M.
  • Journal of Molecular Biology, Vol. 282, Issue 4
  • DOI: 10.1006/jmbi.1998.2050

Efficiency of light energy conversion to hydrogen by the photosynthetic bacterium Rhodobacter sphaeroides
journal, January 1987


The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes
journal, August 2006

  • Cogdell, Richard J.; Gall, Andrew; Köhler, Jürgen
  • Quarterly Reviews of Biophysics, Vol. 39, Issue 3
  • DOI: 10.1017/S0033583506004434

Versatile design of biohybrid light-harvesting architectures to tune location, density, and spectral coverage of attached synthetic chromophores for enhanced energy capture
journal, March 2014

  • Harris, Michelle A.; Jiang, Jianbing; Niedzwiedzki, Dariusz M.
  • Photosynthesis Research, Vol. 121, Issue 1
  • DOI: 10.1007/s11120-014-9993-8

B800→B850 Energy Transfer Mechanism in Bacterial LH2 Complexes Investigated by B800 Pigment Exchange
journal, May 2000


Generic Assignments, Strain Histories and Properties of Pure Cultures of Cyanobacteria
journal, March 1979

  • Stanier, Roger Y.; Deruelles, Josette; Rippka, Rosmarie
  • Microbiology, Vol. 111, Issue 1, p. 1-61
  • DOI: 10.1099/00221287-111-1-1

Structure of bacteriochlorophyll b
journal, May 1974

  • Scheer, Hugo; Svec, Walter A.; Cope, Ben T.
  • Journal of the American Chemical Society, Vol. 96, Issue 11
  • DOI: 10.1021/ja00818a092

Chlorophyll Biosynthesis in Bacteria: The Origins of Structural and Functional Diversity
journal, October 2007


Studies on the Chemical and Photochemical Oxidation of Bacteriochlorophyll 1
journal, October 1966

  • Smith, John R. Lindsay; Calvin, Melvin
  • Journal of the American Chemical Society, Vol. 88, Issue 19
  • DOI: 10.1021/ja00971a036

B850 pigment-protein complex of Rhodopseudomonas sphaeroides: Extinction coefficients, circular dichroism, and the reversible binding of bacteriochlorophyll
journal, September 1981

  • Clayton, R. K.; Clayton, B. J.
  • Proceedings of the National Academy of Sciences, Vol. 78, Issue 9
  • DOI: 10.1073/pnas.78.9.5583

Dimerization of core complexes as an efficient strategy for energy trapping in Rhodobacter sphaeroides
journal, June 2016

  • Chenchiliyan, Manoop; Timpmann, Kõu; Jalviste, Erko
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1857, Issue 6
  • DOI: 10.1016/j.bbabio.2016.03.020

Chlorophyll d as a major pigment
journal, October 1996

  • Miyashita, Hideaki; Ikemoto, Hisato; Kurano, Norihide
  • Nature, Vol. 383, Issue 6599
  • DOI: 10.1038/383402a0

Efficient Energy Transfer from the Carotenoid S2 State in a Photosynthetic Light-Harvesting Complex
journal, February 2001


Engineering of a calcium-ion binding site into the RC-LH1-PufX complex of Rhodobacter sphaeroides to enable ion-dependent spectral red-shifting
journal, November 2017

  • Swainsbury, David J. K.; Martin, Elizabeth C.; Vasilev, Cvetelin
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1858, Issue 11
  • DOI: 10.1016/j.bbabio.2017.08.009

The effects of lithium dodecyl sulfate and sodium borohydride on the absorption spectrum of the B800–850 light-harvesting complex from Rhodopseudomonas acidophila 7750
journal, October 1987

  • Chadwick, Barry. W.; Zhang, Chaoying; Cogdell, Richard J.
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 893, Issue 3
  • DOI: 10.1016/0005-2728(87)90096-X

Mapping the ultrafast flow of harvested solar energy in living photosynthetic cells
journal, October 2017


Cloning and heterologous expression of chlorophyll a synthase in Rhodobacter sphaeroides
journal, November 2016

  • Ipekoğlu, Emre M.; Göçmen, Koray; Öz, Mehmet T.
  • Journal of Basic Microbiology, Vol. 57, Issue 3
  • DOI: 10.1002/jobm.201600580

Isolation and characterization of the pigment-protein complexes of Rhodopseudomonas sphaeroides by lithium dodecyl sulfate/polyacrylamide gel electrophoresis.
journal, January 1980

  • Broglie, R. M.; Hunter, C. N.; Delepelaire, P.
  • Proceedings of the National Academy of Sciences, Vol. 77, Issue 1
  • DOI: 10.1073/pnas.77.1.87

Temporally and spectrally resolved subpicosecond energy transfer within the peripheral antenna complex (LH2) and from LH2 to the core antenna complex in photosynthetic purple bacteria.
journal, December 1995

  • Hess, S.; Chachisvilis, M.; Timpmann, K.
  • Proceedings of the National Academy of Sciences, Vol. 92, Issue 26
  • DOI: 10.1073/pnas.92.26.12333

Probing the bacteriochlorophyll binding site by reconstitution of the light-harvesting complex of Rhodospirillum rubrum with bacteriochlorophyll a analogs
journal, March 1990

  • Parkes-Loach, Pamela S.; Michalski, Tomasz J.; Bass, Wendy J.
  • Biochemistry, Vol. 29, Issue 12
  • DOI: 10.1021/bi00464a010

UCSF Chimera?A visualization system for exploratory research and analysis
journal, January 2004

  • Pettersen, Eric F.; Goddard, Thomas D.; Huang, Conrad C.
  • Journal of Computational Chemistry, Vol. 25, Issue 13
  • DOI: 10.1002/jcc.20084

Strong Coupling of Localized Surface Plasmons to Excitons in Light-Harvesting Complexes
journal, October 2016


Reconstitution of the B800 bacteriochlorophylls in the peripheral light harvesting complex B800–850 of Rhodobacter sphaeroides 2.4.1 with BChl a and modified (bacterio-)chlorophylls
journal, May 1998

  • Bandilla, Michael; Ücker, Beate; Ram, Marija
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1364, Issue 3
  • DOI: 10.1016/S0005-2728(98)00086-3

Assembly of functional photosystem complexes in Rhodobacter sphaeroides incorporating carotenoids from the spirilloxanthin pathway
journal, February 2015

  • Chi, Shuang C.; Mothersole, David J.; Dilbeck, Preston
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1847, Issue 2
  • DOI: 10.1016/j.bbabio.2014.10.004

Enhanced rates of subpicosecond energy transfer in blue-shifted light-harvesting LH2 mutants of Rhodobacter sphaeroides.
journal, July 1994

  • Hess, S.; Visscher, K. J.; Pullerits, T.
  • Biochemistry, Vol. 33, Issue 27
  • DOI: 10.1021/bi00193a017

Reconstitution of Chlorophyll d into the Bacterial Photosynthetic Light-harvesting Protein LH2
journal, August 2018

  • Saga, Yoshitaka; Yamashita, Madoka; Imanishi, Michie
  • Chemistry Letters, Vol. 47, Issue 8
  • DOI: 10.1246/cl.180483

Plasmon-Enhanced Photocurrent of Photosynthetic Pigment Proteins on Nanoporous Silver
journal, December 2015

  • Friebe, Vincent M.; Delgado, Juan D.; Swainsbury, David J. K.
  • Advanced Functional Materials, Vol. 26, Issue 2
  • DOI: 10.1002/adfm.201504020

Probing structure–function relationships in early events in photosynthesis using a chimeric photocomplex
journal, September 2017

  • Nagashima, Kenji V. P.; Sasaki, Mai; Hashimoto, Kanako
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 41
  • DOI: 10.1073/pnas.1703584114

Pigment organization of the B800–850 antenna complex of Rhodopseudomonas sphaeroides
journal, May 1984

  • Kramer, Herman J. M.; van Grondelle, Rienk; Hunter, C. Neil
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 765, Issue 2
  • DOI: 10.1016/0005-2728(84)90009-4

A resonance Raman investigation of the effect of lithium dodecyl sulfate on the B800–850 light-harvesting protein of Rhodopseudomonas acidophila 7750
journal, July 1988


Extinction coefficient for red-shifted chlorophylls: Chlorophyll d and chlorophyll f
journal, August 2012

  • Li, Yaqiong; Scales, Nicholas; Blankenship, Robert E.
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1817, Issue 8
  • DOI: 10.1016/j.bbabio.2012.02.026

Direct Imaging of Protein Organization in an Intact Bacterial Organelle Using High-Resolution Atomic Force Microscopy
journal, November 2016


Palette of lipophilic bioconjugatable bacteriochlorins for construction of biohybrid light-harvesting architectures
journal, January 2013

  • Reddy, Kanumuri Ramesh; Jiang, Jianbing; Krayer, Michael
  • Chemical Science, Vol. 4, Issue 5
  • DOI: 10.1039/c3sc22317e

Cryo-EM structure of the Blastochloris viridis LH1–RC complex at 2.9 Å
journal, April 2018


Theoretical study of excitation transfer from modified B800 rings of the LH II antenna complex of Rps. acidophila
journal, June 2002

  • Linnanto, J.; Korppi-Tommola, J. E. I.
  • Physical Chemistry Chemical Physics, Vol. 4, Issue 14
  • DOI: 10.1039/b108338b

Two Unrelated 8-Vinyl Reductases Ensure Production of Mature Chlorophylls in Acaryochloris marina
journal, February 2016

  • Chen, Guangyu E.; Hitchcock, Andrew; Jackson, Philip J.
  • Journal of Bacteriology, Vol. 198, Issue 9
  • DOI: 10.1128/JB.00925-15

Multireference Excitation Energies for Bacteriochlorophylls A within Light Harvesting System 2
journal, February 2016

  • Anda, André; Hansen, Thorsten; De Vico, Luca
  • Journal of Chemical Theory and Computation, Vol. 12, Issue 3
  • DOI: 10.1021/acs.jctc.5b01104

Biosynthesis of Chlorophyll a in a Purple Bacterial Phototroph and Assembly into a Plant Chlorophyll–Protein Complex
journal, May 2016

  • Hitchcock, Andrew; Jackson, Philip J.; Chidgey, Jack W.
  • ACS Synthetic Biology, Vol. 5, Issue 9
  • DOI: 10.1021/acssynbio.6b00069

Reengineering the Optical Absorption Cross-Section of Photosynthetic Reaction Centers
journal, March 2014

  • Dutta, Palash K.; Lin, Su; Loskutov, Andrey
  • Journal of the American Chemical Society, Vol. 136, Issue 12
  • DOI: 10.1021/ja411843k

Excitation Energy Transfer between the B850 and B875 Antenna Complexes of Rhodobacter sphaeroides
journal, February 1997


Probing the local lipid environment of the cytochrome bc1 and Synechocystis sp. PCC 6803 cytochrome b6f complexes with styrene maleic acid
journal, March 2018

  • Swainsbury, David J. K.; Proctor, Matthew S.; Hitchcock, Andrew
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1859, Issue 3
  • DOI: 10.1016/j.bbabio.2017.12.005

A Red-Shifted Chlorophyll: Fig. 1
journal, August 2010


Top-Down Mass Spectrometry Analysis of Membrane-Bound Light-Harvesting Complex 2 from Rhodobacter sphaeroides
journal, November 2015


Overall energy conversion efficiency of a photosynthetic vesicle
journal, August 2016


Influence of the Protein Binding Site on the Absorption Properties of the Monomeric Bacteriochlorophyll in Rhodobacter sphaeroides LH2 Complex
journal, December 1997

  • Gall, Andrew; Fowler, Gregory J. S.; Hunter, C. Neil
  • Biochemistry, Vol. 36, Issue 51
  • DOI: 10.1021/bi9717237

Interference lithographic nanopatterning of plant and bacterial light-harvesting complexes on gold substrates
journal, August 2015

  • Patole, Samson; Vasilev, Cvetelin; El-Zubir, Osama
  • Interface Focus, Vol. 5, Issue 4
  • DOI: 10.1098/rsfs.2015.0005

Biohybrid Photosynthetic Antenna Complexes for Enhanced Light-Harvesting
journal, February 2012

  • Springer, Joseph W.; Parkes-Loach, Pamela S.; Reddy, Kanumuri Ramesh
  • Journal of the American Chemical Society, Vol. 134, Issue 10
  • DOI: 10.1021/ja207390y

Engineered biosynthesis of bacteriochlorophyll gF in Rhodobacter sphaeroides
journal, July 2018

  • Ortega-Ramos, Marcia; Canniffe, Daniel P.; Radle, Matthew I.
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1859, Issue 7
  • DOI: 10.1016/j.bbabio.2018.02.006

PucC and LhaA direct efficient assembly of the light-harvesting complexes in Rhodobacter sphaeroides : Photosystem assembly in
journal, November 2015

  • Mothersole, David J.; Jackson, Philip J.; Vasilev, Cvetelin
  • Molecular Microbiology, Vol. 99, Issue 2
  • DOI: 10.1111/mmi.13235

Engineered biosynthesis of bacteriochlorophyll b in Rhodobacter sphaeroides
journal, October 2014

  • Canniffe, Daniel P.; Hunter, C. Neil
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1837, Issue 10
  • DOI: 10.1016/j.bbabio.2014.07.011

Augmenting light coverage for photosynthesis through YFP-enhanced charge separation at the Rhodobacter sphaeroides reaction centre
journal, January 2017

  • Grayson, Katie J.; Faries, Kaitlyn M.; Huang, Xia
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms13972

Extension of Light-Harvesting Ability of Photosynthetic Light-Harvesting Complex 2 (LH2) through Ultrafast Energy Transfer from Covalently Attached Artificial Chromophores
journal, September 2015

  • Yoneda, Yusuke; Noji, Tomoyasu; Katayama, Tetsuro
  • Journal of the American Chemical Society, Vol. 137, Issue 40
  • DOI: 10.1021/jacs.5b08508

Integration of multiple chromophores with native photosynthetic antennas to enhance solar energy capture and delivery
journal, January 2013

  • Harris, Michelle A.; Parkes-Loach, Pamela S.; Springer, Joseph W.
  • Chemical Science, Vol. 4, Issue 10
  • DOI: 10.1039/c3sc51518d

Probing the binding sites of exchanged chlorophyll a in LH2 by Raman and site-selection fluorescence spectroscopies
journal, February 2001


The role of the quinone pool in the cyclic electron-transfer chain of Rhodopseudomonas sphaeroides A modified Q-cycle mechanism
journal, May 1983

  • Crofts, A. R.; Meinhardt, S. W.; Jones, K. R.
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 723, Issue 2
  • DOI: 10.1016/0005-2728(83)90120-2