Interstitial migration behavior and defect evolution in ion irradiated pure nickel and Ni-xFe binary alloys
- Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Nuclear Engineering and Radiological Sciences
- Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division
- Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering
- Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division; Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering
- Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Nuclear Engineering and Radiological Sciences, and Dept. of Materials Science and Engineering
Transition from long-range one-dimensional to short-range three-dimensional migration modes of interstitial defect clusters greatly reduces the damage accumulation in single-phase concentrated solid solution alloys under ion irradiation. A synergetic investigation with experimental, computational and modeling approaches revealed that both the resistance to void swelling and the delay in dislocation evolution in Ni-Fe alloys increased with iron concentration. This was attributed to the gradually increased sluggishness of defect migration, which enhances interstitial and vacancy recombination. Transition from long-range one-dimensional defect motion in pure nickel to short-range three-dimensional motion in concentrated Ni-Fe alloys is continuum, not abrupt, and within an iron concentration range up to 20%. Lastly, the gradual transition process can be quantitatively characterized by the mean free path of the interstitial defect clusters.
- Research Organization:
- Energy Frontier Research Centers (EFRC) (United States). Energy Dissipation to Defect Evolution (EDDE); Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Basic Energy Sciences (BES)
- Grant/Contract Number:
- AC05-00OR22725
- OSTI ID:
- 1482442
- Alternate ID(s):
- OSTI ID: 1548035
- Journal Information:
- Journal of Nuclear Materials, Vol. 509, Issue C; ISSN 0022-3115
- Publisher:
- ElsevierCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Web of Science
Similar Records
Migration of Cr-Vacancy Clusters and Interstitial Cr in Alpha-Fe using the Dimer Method
Analysis of position-dependent cavity parameters in irradiated metals to obtain insight on fundamental defect migration phenomena