Tuning magnetocrystalline anisotropy by cobalt alloying in hexagonal Fe3Ge1
- Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Here, we show using both experimental and theoretical methods that cobalt substitution in the hexagonal ferromagnet Fe3Ge suppresses the planar magnetic anisotropy and favors a uniaxial state. Uniaxial ferromagnetism is observed at room temperature for cobalt concentrations of only a few percent, and 10% substitution fully suppresses the planar magnetic structure at least down to 5 K, with only a small effect on the magnetization and Curie temperature. First principles calculations predict strong uniaxial magnetocrystalline anisotropy and promising permanent magnet properties for higher cobalt concentrations. Finally, although these high Co concentrations were not realized experimentally, this work suggests that the rare-earth-free Fe3Ge structure supports intrinsic magnetic properties that may enable promising permanent magnet performance.
- Research Organization:
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)
- Sponsoring Organization:
- USDOE Office of Energy Efficiency and Renewable Energy (EERE)
- Grant/Contract Number:
- AC05-00OR22725
- OSTI ID:
- 1482435
- Journal Information:
- Scientific Reports, Vol. 8, Issue 1; ISSN 2045-2322
- Publisher:
- Nature Publishing GroupCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Web of Science
Similar Records
Magnetic properties and magnetocrystalline anisotropy of Nd2Fe17, Nd2Fe17X3, and related compounds
Strong Magnetocrystalline Anisotropy Arising from Metal–Ligand Covalency in a Metal–Organic Candidate for 2D Magnetic Order