skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Interface engineering for light-driven water oxidation: unravelling the passivating and catalytic mechanism in BiVO 4 overlayers

Abstract

Artificial photosynthetic approaches require the combination of light absorbers interfaced with overlayers that enhance charge transport and collection to perform catalytic reactions.

Authors:
 [1];  [1]; ORCiD logo [1];  [2];  [1]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [1]; ORCiD logo [1]
  1. Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, USA, Joint Center for Artificial Photosynthesis
  2. Department of Materials Science and Engineering, University of California Berkeley, Berkeley, USA, National Center for Electron Microscopy
  3. Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1482409
Grant/Contract Number:  
SC0004993; AC02-05CH11231
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Sustainable Energy & Fuels
Additional Journal Information:
Journal Name: Sustainable Energy & Fuels Journal Volume: 3 Journal Issue: 1; Journal ID: ISSN 2398-4902
Publisher:
Royal Society of Chemistry (RSC)
Country of Publication:
United Kingdom
Language:
English

Citation Formats

Liu, Guiji, Eichhorn, Johanna, Jiang, Chang-Ming, Scott, Mary C., Hess, Lucas H., Gregoire, John M., Haber, Joel A., Sharp, Ian D., and Toma, Francesca M. Interface engineering for light-driven water oxidation: unravelling the passivating and catalytic mechanism in BiVO 4 overlayers. United Kingdom: N. p., 2019. Web. doi:10.1039/C8SE00473K.
Liu, Guiji, Eichhorn, Johanna, Jiang, Chang-Ming, Scott, Mary C., Hess, Lucas H., Gregoire, John M., Haber, Joel A., Sharp, Ian D., & Toma, Francesca M. Interface engineering for light-driven water oxidation: unravelling the passivating and catalytic mechanism in BiVO 4 overlayers. United Kingdom. doi:10.1039/C8SE00473K.
Liu, Guiji, Eichhorn, Johanna, Jiang, Chang-Ming, Scott, Mary C., Hess, Lucas H., Gregoire, John M., Haber, Joel A., Sharp, Ian D., and Toma, Francesca M. Tue . "Interface engineering for light-driven water oxidation: unravelling the passivating and catalytic mechanism in BiVO 4 overlayers". United Kingdom. doi:10.1039/C8SE00473K.
@article{osti_1482409,
title = {Interface engineering for light-driven water oxidation: unravelling the passivating and catalytic mechanism in BiVO 4 overlayers},
author = {Liu, Guiji and Eichhorn, Johanna and Jiang, Chang-Ming and Scott, Mary C. and Hess, Lucas H. and Gregoire, John M. and Haber, Joel A. and Sharp, Ian D. and Toma, Francesca M.},
abstractNote = {Artificial photosynthetic approaches require the combination of light absorbers interfaced with overlayers that enhance charge transport and collection to perform catalytic reactions.},
doi = {10.1039/C8SE00473K},
journal = {Sustainable Energy & Fuels},
number = 1,
volume = 3,
place = {United Kingdom},
year = {2019},
month = {1}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1039/C8SE00473K

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Photoelectrochemical cells
journal, November 2001


Towards practical implementation
journal, January 2012

  • Dahl, Søren; Chorkendorff, Ib
  • Nature Materials, Vol. 11, Issue 2
  • DOI: 10.1038/nmat3233

Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes
journal, July 2016

  • Toma, Francesca M.; Cooper, Jason K.; Kunzelmann, Viktoria
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12012

The Origin of Slow Carrier Transport in BiVO 4 Thin Film Photoanodes: A Time-Resolved Microwave Conductivity Study
journal, July 2013

  • Abdi, Fatwa F.; Savenije, Tom J.; May, Matthias M.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 16
  • DOI: 10.1021/jz4013257

Discovery of Fe–Ce Oxide/BiVO 4 Photoanodes through Combinatorial Exploration of Ni–Fe–Co–Ce Oxide Coatings
journal, August 2016

  • Shinde, Aniketa; Guevarra, Dan; Liu, Guiji
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 36
  • DOI: 10.1021/acsami.6b06714

Visible light driven overall water splitting using cocatalyst/BiVO4 photoanode with minimized bias
journal, January 2013

  • Ding, Chunmei; Shi, Jingying; Wang, Donge
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 13
  • DOI: 10.1039/c3cp50295c

Multiphase Nanostructure of a Quinary Metal Oxide Electrocatalyst Reveals a New Direction for OER Electrocatalyst Design
journal, February 2015

  • Haber, Joel A.; Anzenburg, Eitan; Yano, Junko
  • Advanced Energy Materials, Vol. 5, Issue 10
  • DOI: 10.1002/aenm.201402307

A Tantalum Nitride Photoanode Modified with a Hole-Storage Layer for Highly Stable Solar Water Splitting
journal, May 2014

  • Liu, Guiji; Shi, Jingying; Zhang, Fuxiang
  • Angewandte Chemie International Edition, Vol. 53, Issue 28
  • DOI: 10.1002/anie.201404697

Bismuth Vanadate as a Platform for Accelerating Discovery and Development of Complex Transition-Metal Oxide Photoanodes
journal, December 2016


Development of solar fuels photoanodes through combinatorial integration of Ni–La–Co–Ce oxide catalysts on BiVO 4
journal, January 2016

  • Guevarra, D.; Shinde, A.; Suram, S. K.
  • Energy & Environmental Science, Vol. 9, Issue 2
  • DOI: 10.1039/C5EE03488D

Catalyst Deposition on Photoanodes: The Roles of Intrinsic Catalytic Activity, Catalyst Electrical Conductivity, and Semiconductor Morphology
journal, March 2018


Photocharged BiVO 4 photoanodes for improved solar water splitting
journal, January 2016

  • Trześniewski, Bartek J.; Smith, Wilson A.
  • Journal of Materials Chemistry A, Vol. 4, Issue 8
  • DOI: 10.1039/C5TA04716A

Methods for Electrochemical Synthesis and Photoelectrochemical Characterization for Photoelectrodes
journal, November 2016


Near-Complete Suppression of Surface Recombination in Solar Photoelectrolysis by “Co-Pi” Catalyst-Modified W:BiVO 4
journal, November 2011

  • Zhong, Diane K.; Choi, Sujung; Gamelin, Daniel R.
  • Journal of the American Chemical Society, Vol. 133, Issue 45
  • DOI: 10.1021/ja207348x

Surface Modification of CoO x Loaded BiVO 4 Photoanodes with Ultrathin p -Type NiO Layers for Improved Solar Water Oxidation
journal, April 2015

  • Zhong, Miao; Hisatomi, Takashi; Kuang, Yongbo
  • Journal of the American Chemical Society, Vol. 137, Issue 15
  • DOI: 10.1021/jacs.5b00256

Nanomaterials for renewable energy production and storage
journal, January 2012

  • Chen, Xiaobo; Li, Can; Grätzel, Michaël
  • Chemical Society Reviews, Vol. 41, Issue 23
  • DOI: 10.1039/c2cs35230c

Toward Cost-Effective Solar Energy Use
journal, February 2007


Nanoporous BiVO4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting
journal, February 2014


Improving O2 production of WO3 photoanodes with IrO2 in acidic aqueous electrolyte
journal, January 2014

  • Spurgeon, Joshua M.; Velazquez, Jesus M.; McDowell, Matthew T.
  • Physical Chemistry Chemical Physics, Vol. 16, Issue 8
  • DOI: 10.1039/c3cp55527e

Efficient and Stable Photo-Oxidation of Water by a Bismuth Vanadate Photoanode Coupled with an Iron Oxyhydroxide Oxygen Evolution Catalyst
journal, January 2012

  • Seabold, Jason A.; Choi, Kyoung-Shin
  • Journal of the American Chemical Society, Vol. 134, Issue 4, p. 2186-2192
  • DOI: 10.1021/ja209001d

Solar Water Splitting Cells
journal, November 2010

  • Walter, Michael G.; Warren, Emily L.; McKone, James R.
  • Chemical Reviews, Vol. 110, Issue 11, p. 6446-6473
  • DOI: 10.1021/cr1002326

Photoinduced Absorption Spectroscopy of CoPi on BiVO 4 : The Function of CoPi during Water Oxidation
journal, May 2016

  • Ma, Yimeng; Kafizas, Andreas; Pendlebury, Stephanie R.
  • Advanced Functional Materials, Vol. 26, Issue 27
  • DOI: 10.1002/adfm.201600711

The Transient Photocurrent and Photovoltage Behavior of a Hematite Photoanode under Working Conditions and the Influence of Surface Treatments
journal, December 2012

  • Le Formal, Florian; Sivula, Kevin; Grätzel, Michael
  • The Journal of Physical Chemistry C, Vol. 116, Issue 51
  • DOI: 10.1021/jp308591k

Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry
journal, January 2013

  • Pinaud, Blaise A.; Benck, Jesse D.; Seitz, Linsey C.
  • Energy & Environmental Science, Vol. 6, Issue 7
  • DOI: 10.1039/c3ee40831k

Photocurrent of BiVO 4 is limited by surface recombination, not surface catalysis
journal, January 2017

  • Zachäus, Carolin; Abdi, Fatwa F.; Peter, Laurence M.
  • Chemical Science, Vol. 8, Issue 5
  • DOI: 10.1039/C7SC00363C

Screening of Electrocatalysts for Photoelectrochemical Water Oxidation on W-Doped BiVO 4 Photocatalysts by Scanning Electrochemical Microscopy
journal, June 2011

  • Ye, Heechang; Park, Hyun S.; Bard, Allen J.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 25
  • DOI: 10.1021/jp200852c

The role of the CeO 2 /BiVO 4 interface in optimized Fe–Ce oxide coatings for solar fuels photoanodes
journal, January 2016

  • Shinde, A.; Li, G.; Zhou, L.
  • Journal of Materials Chemistry A, Vol. 4, Issue 37
  • DOI: 10.1039/C6TA04746G

Implicating the contributions of surface and bulk states on carrier trapping and photocurrent performance of BiVO 4 photoanodes
journal, January 2017

  • Pattengale, B.; Huang, J.
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 9
  • DOI: 10.1039/C6CP08564D

A Place in the Sun for Artificial Photosynthesis?
journal, May 2016


Nanoscale imaging of charge carrier transport in water splitting photoanodes
journal, July 2018