Interface engineering for light-driven water oxidation: unravelling the passivating and catalytic mechanism in BiVO 4 overlayers
Abstract
Artificial photosynthetic approaches require the combination of light absorbers interfaced with overlayers that enhance charge transport and collection to perform catalytic reactions.
- Authors:
-
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, USA, Joint Center for Artificial Photosynthesis
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, USA, National Center for Electron Microscopy
- Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, USA
- Publication Date:
- Sponsoring Org.:
- USDOE
- OSTI Identifier:
- 1482409
- Grant/Contract Number:
- SC0004993; AC02-05CH11231
- Resource Type:
- Publisher's Accepted Manuscript
- Journal Name:
- Sustainable Energy & Fuels
- Additional Journal Information:
- Journal Name: Sustainable Energy & Fuels Journal Volume: 3 Journal Issue: 1; Journal ID: ISSN 2398-4902
- Publisher:
- Royal Society of Chemistry (RSC)
- Country of Publication:
- United Kingdom
- Language:
- English
Citation Formats
Liu, Guiji, Eichhorn, Johanna, Jiang, Chang-Ming, Scott, Mary C., Hess, Lucas H., Gregoire, John M., Haber, Joel A., Sharp, Ian D., and Toma, Francesca M. Interface engineering for light-driven water oxidation: unravelling the passivating and catalytic mechanism in BiVO 4 overlayers. United Kingdom: N. p., 2019.
Web. doi:10.1039/C8SE00473K.
Liu, Guiji, Eichhorn, Johanna, Jiang, Chang-Ming, Scott, Mary C., Hess, Lucas H., Gregoire, John M., Haber, Joel A., Sharp, Ian D., & Toma, Francesca M. Interface engineering for light-driven water oxidation: unravelling the passivating and catalytic mechanism in BiVO 4 overlayers. United Kingdom. https://doi.org/10.1039/C8SE00473K
Liu, Guiji, Eichhorn, Johanna, Jiang, Chang-Ming, Scott, Mary C., Hess, Lucas H., Gregoire, John M., Haber, Joel A., Sharp, Ian D., and Toma, Francesca M. Tue .
"Interface engineering for light-driven water oxidation: unravelling the passivating and catalytic mechanism in BiVO 4 overlayers". United Kingdom. https://doi.org/10.1039/C8SE00473K.
@article{osti_1482409,
title = {Interface engineering for light-driven water oxidation: unravelling the passivating and catalytic mechanism in BiVO 4 overlayers},
author = {Liu, Guiji and Eichhorn, Johanna and Jiang, Chang-Ming and Scott, Mary C. and Hess, Lucas H. and Gregoire, John M. and Haber, Joel A. and Sharp, Ian D. and Toma, Francesca M.},
abstractNote = {Artificial photosynthetic approaches require the combination of light absorbers interfaced with overlayers that enhance charge transport and collection to perform catalytic reactions.},
doi = {10.1039/C8SE00473K},
journal = {Sustainable Energy & Fuels},
number = 1,
volume = 3,
place = {United Kingdom},
year = {2019},
month = {1}
}
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1039/C8SE00473K
https://doi.org/10.1039/C8SE00473K
Other availability
Cited by: 20 works
Citation information provided by
Web of Science
Web of Science
Save to My Library
You must Sign In or Create an Account in order to save documents to your library.
Works referenced in this record:
Towards practical implementation
journal, January 2012
- Dahl, Søren; Chorkendorff, Ib
- Nature Materials, Vol. 11, Issue 2
Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes
journal, July 2016
- Toma, Francesca M.; Cooper, Jason K.; Kunzelmann, Viktoria
- Nature Communications, Vol. 7, Issue 1
The Origin of Slow Carrier Transport in BiVO 4 Thin Film Photoanodes: A Time-Resolved Microwave Conductivity Study
journal, July 2013
- Abdi, Fatwa F.; Savenije, Tom J.; May, Matthias M.
- The Journal of Physical Chemistry Letters, Vol. 4, Issue 16
Discovery of Fe–Ce Oxide/BiVO 4 Photoanodes through Combinatorial Exploration of Ni–Fe–Co–Ce Oxide Coatings
journal, August 2016
- Shinde, Aniketa; Guevarra, Dan; Liu, Guiji
- ACS Applied Materials & Interfaces, Vol. 8, Issue 36
Visible light driven overall water splitting using cocatalyst/BiVO4 photoanode with minimized bias
journal, January 2013
- Ding, Chunmei; Shi, Jingying; Wang, Donge
- Physical Chemistry Chemical Physics, Vol. 15, Issue 13
Multiphase Nanostructure of a Quinary Metal Oxide Electrocatalyst Reveals a New Direction for OER Electrocatalyst Design
journal, February 2015
- Haber, Joel A.; Anzenburg, Eitan; Yano, Junko
- Advanced Energy Materials, Vol. 5, Issue 10
A Tantalum Nitride Photoanode Modified with a Hole-Storage Layer for Highly Stable Solar Water Splitting
journal, May 2014
- Liu, Guiji; Shi, Jingying; Zhang, Fuxiang
- Angewandte Chemie International Edition, Vol. 53, Issue 28
Bismuth Vanadate as a Platform for Accelerating Discovery and Development of Complex Transition-Metal Oxide Photoanodes
journal, December 2016
- Sharp, Ian D.; Cooper, Jason K.; Toma, Francesca M.
- ACS Energy Letters, Vol. 2, Issue 1
Development of solar fuels photoanodes through combinatorial integration of Ni–La–Co–Ce oxide catalysts on BiVO 4
journal, January 2016
- Guevarra, D.; Shinde, A.; Suram, S. K.
- Energy & Environmental Science, Vol. 9, Issue 2
Catalyst Deposition on Photoanodes: The Roles of Intrinsic Catalytic Activity, Catalyst Electrical Conductivity, and Semiconductor Morphology
journal, March 2018
- Qiu, Jingjing; Hajibabaei, Hamed; Nellist, Michael R.
- ACS Energy Letters, Vol. 3, Issue 4
Photocharged BiVO 4 photoanodes for improved solar water splitting
journal, January 2016
- Trześniewski, Bartek J.; Smith, Wilson A.
- Journal of Materials Chemistry A, Vol. 4, Issue 8
Methods for Electrochemical Synthesis and Photoelectrochemical Characterization for Photoelectrodes
journal, November 2016
- Govindaraju, Gokul V.; Wheeler, Garrett P.; Lee, Dongho
- Chemistry of Materials, Vol. 29, Issue 1
Near-Complete Suppression of Surface Recombination in Solar Photoelectrolysis by “Co-Pi” Catalyst-Modified W:BiVO 4
journal, November 2011
- Zhong, Diane K.; Choi, Sujung; Gamelin, Daniel R.
- Journal of the American Chemical Society, Vol. 133, Issue 45
Surface Modification of CoO x Loaded BiVO 4 Photoanodes with Ultrathin p -Type NiO Layers for Improved Solar Water Oxidation
journal, April 2015
- Zhong, Miao; Hisatomi, Takashi; Kuang, Yongbo
- Journal of the American Chemical Society, Vol. 137, Issue 15
Nanomaterials for renewable energy production and storage
journal, January 2012
- Chen, Xiaobo; Li, Can; Grätzel, Michaël
- Chemical Society Reviews, Vol. 41, Issue 23
Toward Cost-Effective Solar Energy Use
journal, February 2007
- Lewis, N. S.
- Science, Vol. 315, Issue 5813
Nanoporous BiVO4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting
journal, February 2014
- Kim, Tae Woo; Choi, Kyoung-Shin
- Science, Vol. 343, Issue 6174, p. 990-994
Improving O2 production of WO3 photoanodes with IrO2 in acidic aqueous electrolyte
journal, January 2014
- Spurgeon, Joshua M.; Velazquez, Jesus M.; McDowell, Matthew T.
- Physical Chemistry Chemical Physics, Vol. 16, Issue 8
Efficient and Stable Photo-Oxidation of Water by a Bismuth Vanadate Photoanode Coupled with an Iron Oxyhydroxide Oxygen Evolution Catalyst
journal, January 2012
- Seabold, Jason A.; Choi, Kyoung-Shin
- Journal of the American Chemical Society, Vol. 134, Issue 4, p. 2186-2192
Solar Water Splitting Cells
journal, November 2010
- Walter, Michael G.; Warren, Emily L.; McKone, James R.
- Chemical Reviews, Vol. 110, Issue 11, p. 6446-6473
Photoinduced Absorption Spectroscopy of CoPi on BiVO 4 : The Function of CoPi during Water Oxidation
journal, May 2016
- Ma, Yimeng; Kafizas, Andreas; Pendlebury, Stephanie R.
- Advanced Functional Materials, Vol. 26, Issue 27
The Transient Photocurrent and Photovoltage Behavior of a Hematite Photoanode under Working Conditions and the Influence of Surface Treatments
journal, December 2012
- Le Formal, Florian; Sivula, Kevin; Grätzel, Michael
- The Journal of Physical Chemistry C, Vol. 116, Issue 51
Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry
journal, January 2013
- Pinaud, Blaise A.; Benck, Jesse D.; Seitz, Linsey C.
- Energy & Environmental Science, Vol. 6, Issue 7
Photocurrent of BiVO 4 is limited by surface recombination, not surface catalysis
journal, January 2017
- Zachäus, Carolin; Abdi, Fatwa F.; Peter, Laurence M.
- Chemical Science, Vol. 8, Issue 5
Screening of Electrocatalysts for Photoelectrochemical Water Oxidation on W-Doped BiVO 4 Photocatalysts by Scanning Electrochemical Microscopy
journal, June 2011
- Ye, Heechang; Park, Hyun S.; Bard, Allen J.
- The Journal of Physical Chemistry C, Vol. 115, Issue 25
The role of the CeO 2 /BiVO 4 interface in optimized Fe–Ce oxide coatings for solar fuels photoanodes
journal, January 2016
- Shinde, A.; Li, G.; Zhou, L.
- Journal of Materials Chemistry A, Vol. 4, Issue 37
Implicating the contributions of surface and bulk states on carrier trapping and photocurrent performance of BiVO 4 photoanodes
journal, January 2017
- Pattengale, B.; Huang, J.
- Physical Chemistry Chemical Physics, Vol. 19, Issue 9
A Place in the Sun for Artificial Photosynthesis?
journal, May 2016
- Su, Jinzhan; Vayssieres, Lionel
- ACS Energy Letters, Vol. 1, Issue 1
Nanoscale imaging of charge carrier transport in water splitting photoanodes
journal, July 2018
- Eichhorn, Johanna; Kastl, Christoph; Cooper, Jason K.
- Nature Communications, Vol. 9, Issue 1