DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Epitaxial graphene-encapsulated surface reconstruction of Ge(110)

Abstract

Understanding and engineering the properties of crystalline surfaces has been critical in achieving functional electronics at the nanoscale. Employing scanning tunneling microscopy, surface x-ray diffraction, and high-resolution x-ray reflectivity experiments, we present a thorough study of epitaxial graphene (EG)/Ge(110) and report a Ge(110) "6 x 2" reconstruction stabilized by the presence of epitaxial graphene unseen in group-IV semiconductor surfaces. As a result, X-ray studies reveal that graphene resides atop the surface reconstruction with a 0.34 nm van der Waals (vdW) gap and provides protection from ambient degradation.

Authors:
 [1];  [2];  [3];  [2];  [3];  [1];  [4];  [1]
  1. Northwestern Univ., Evanston, IL (United States)
  2. Northwestern Univ., Evanston, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States)
  3. Univ. of Wisconsin, Madison, WI (United States)
  4. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); US Department of the Navy, Office of Naval Research (ONR); Air Force Research Laboratory (AFRL), Air Force Office of Scientific Research (AFOSR); National Science Foundation (NSF)
OSTI Identifier:
1482106
Alternate Identifier(s):
OSTI ID: 1433027
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Materials
Additional Journal Information:
Journal Volume: 2; Journal Issue: 4; Journal ID: ISSN 2475-9953
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Campbell, Gavin P., Kiraly, Brian, Jacobberger, Robert M., Mannix, Andrew J., Arnold, Michael S., Hersam, Mark C., Guisinger, Nathan P., and Bedzyk, Michael J. Epitaxial graphene-encapsulated surface reconstruction of Ge(110). United States: N. p., 2018. Web. doi:10.1103/PhysRevMaterials.2.044004.
Campbell, Gavin P., Kiraly, Brian, Jacobberger, Robert M., Mannix, Andrew J., Arnold, Michael S., Hersam, Mark C., Guisinger, Nathan P., & Bedzyk, Michael J. Epitaxial graphene-encapsulated surface reconstruction of Ge(110). United States. https://doi.org/10.1103/PhysRevMaterials.2.044004
Campbell, Gavin P., Kiraly, Brian, Jacobberger, Robert M., Mannix, Andrew J., Arnold, Michael S., Hersam, Mark C., Guisinger, Nathan P., and Bedzyk, Michael J. Fri . "Epitaxial graphene-encapsulated surface reconstruction of Ge(110)". United States. https://doi.org/10.1103/PhysRevMaterials.2.044004. https://www.osti.gov/servlets/purl/1482106.
@article{osti_1482106,
title = {Epitaxial graphene-encapsulated surface reconstruction of Ge(110)},
author = {Campbell, Gavin P. and Kiraly, Brian and Jacobberger, Robert M. and Mannix, Andrew J. and Arnold, Michael S. and Hersam, Mark C. and Guisinger, Nathan P. and Bedzyk, Michael J.},
abstractNote = {Understanding and engineering the properties of crystalline surfaces has been critical in achieving functional electronics at the nanoscale. Employing scanning tunneling microscopy, surface x-ray diffraction, and high-resolution x-ray reflectivity experiments, we present a thorough study of epitaxial graphene (EG)/Ge(110) and report a Ge(110) "6 x 2" reconstruction stabilized by the presence of epitaxial graphene unseen in group-IV semiconductor surfaces. As a result, X-ray studies reveal that graphene resides atop the surface reconstruction with a 0.34 nm van der Waals (vdW) gap and provides protection from ambient degradation.},
doi = {10.1103/PhysRevMaterials.2.044004},
journal = {Physical Review Materials},
number = 4,
volume = 2,
place = {United States},
year = {2018},
month = {4}
}

Journal Article:

Citation Metrics:
Cited by: 5 works
Citation information provided by
Web of Science

Figures / Tables:

TABLE I TABLE I: Results of model dependent fit to XRR data listing vertical height (Ζ), layer occupancy fraction (Θ), and distribution width (σ) fitting parameters for as-grown and “6x2” Ge(110). Z is vertical displacement relative to the top-most Ge(110) bulk-like atomic plane, Θ is in units of bulk-like 2D atomic densitiesmore » (8.8 nm-2 for Ge(110) planes and 38.2 nm-2 for EG). Uncertainty of 3 standard deviations are given in parentheses.« less

Save / Share:

Works referenced in this record:

Atomic arrangements of 16×2 and (17,15,1) 2×1 structures on a Si(110) surface
journal, September 1994


Ambipolar doping in quasifree epitaxial graphene on SiC(0001) controlled by Ge intercalation
journal, September 2011

  • Emtsev, Konstantin V.; Zakharov, Alexei A.; Coletti, Camilla
  • Physical Review B, Vol. 84, Issue 12
  • DOI: 10.1103/PhysRevB.84.125423

X-ray Reflectivity as a Probe of Mineral-Fluid Interfaces: A User Guide
journal, January 2002


Chemically Resolved Interface Structure of Epitaxial Graphene on SiC(0001)
journal, November 2013


RHEED Study of Surface Reconstruction at Clean Ge(110) Surface
journal, October 1985

  • Noro, Hisato; Ichikawa, Toshihiro
  • Japanese Journal of Applied Physics, Vol. 24, Issue Part 1, No. 10
  • DOI: 10.1143/JJAP.24.1288

Two-dimensional gallium nitride realized via graphene encapsulation
journal, August 2016

  • Al Balushi, Zakaria Y.; Wang, Ke; Ghosh, Ram Krishna
  • Nature Materials, Vol. 15, Issue 11
  • DOI: 10.1038/nmat4742

Reconstructions and phase transition of clean Ge(110)
journal, March 2014


Electronic structure of the Si ( 110 ) ( 16 × 2 ) surface: High-resolution ARPES and STM investigation
journal, January 2009


Lateral adsorption geometry and site-specific electronic structure of a large organic chemisorbate on a metal surface
journal, July 2006


High-resolution photoemission spectroscopy study of the single-domain Si ( 110 ) 16 × 2 surface
journal, March 2007


Quasi-Free-Standing Epitaxial Graphene on SiC Obtained by Hydrogen Intercalation
journal, December 2009


Structural elements on reconstructed Si and Ge ( 110 ) surfaces
journal, July 2004


Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable Hydrogen-Terminated Germanium
journal, April 2014


Surface structure determination by X-ray diffraction
journal, May 1989


7 × 7 Reconstruction on Si(111) Resolved in Real Space
journal, January 1983


Growth and electronic structure of graphene on semiconducting Ge(110)
journal, October 2017


Direct Growth of Graphene Film on Germanium Substrate
journal, August 2013

  • Wang, Gang; Zhang, Miao; Zhu, Yun
  • Scientific Reports, Vol. 3, Issue 1
  • DOI: 10.1038/srep02465

Model-Independent Structure Determination of the InSb(111)2×2 Surface with Use of Synchrotron X-Ray Diffraction
journal, March 1985


Semiconductor Surface Reconstruction:  The Structural Chemistry of Two-Dimensional Surface Compounds
journal, January 1996


Variable temperature study of the passivation of dangling bonds at Si(100)-2×1 reconstructed surfaces with H and D
journal, January 2002

  • Hersam, M. C.; Guisinger, N. P.; Lee, J.
  • Applied Physics Letters, Vol. 80, Issue 2
  • DOI: 10.1063/1.1431689

Organometallic Chemistry on Silicon and Germanium Surfaces
journal, May 2002


Structural analysis of the indium-stabilized GaAs ( 001 ) c ( 8 × 2 ) surface
journal, December 2002


On the use of CCD area detectors for high-resolution specular X-ray reflectivity
journal, June 2006


Electronic and energetic properties of Ge(110) pentagons
journal, August 2014


Passivation of Germanium by Graphene
journal, May 2017

  • Rojas Delgado, Richard; Jacobberger, Robert M.; Roy, Susmit Singha
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 20
  • DOI: 10.1021/acsami.7b03889

Surface X-ray diffraction
journal, May 1992


The rise of graphene
journal, March 2007

  • Geim, A. K.; Novoselov, K. S.
  • Nature Materials, Vol. 6, Issue 3, p. 183-191
  • DOI: 10.1038/nmat1849

X-Ray Evanescent-Wave Absorption and Emission
journal, January 1983


Graphene on Ru(0001): a corrugated and chiral structure
journal, April 2010


Ideal hydrogen termination of the Si (111) surface
journal, February 1990

  • Higashi, G. S.; Chabal, Y. J.; Trucks, G. W.
  • Applied Physics Letters, Vol. 56, Issue 7
  • DOI: 10.1063/1.102728

Elemental structure in Si(110)-“16×2” revealed by scanning tunneling microscopy
journal, January 2000


An ab initio study on the atomic geometry of reconstructed Ge()16×2 surface
journal, October 2003


How Graphene Islands Are Unidirectionally Aligned on the Ge(110) Surface
journal, April 2016


Electronic and Mechanical Properties of Graphene–Germanium Interfaces Grown by Chemical Vapor Deposition
journal, October 2015


Works referencing / citing this record:

Electronic and Interface Properties in Graphene Oxide/Hydrogen-Passivated Ge Heterostructure
journal, October 2018

  • Wang, Qian; Li, Xiang; Wu, Liyuan
  • physica status solidi (RRL) - Rapid Research Letters, Vol. 13, Issue 2
  • DOI: 10.1002/pssr.201800461

Driving chemical interactions at graphene-germanium van der Waals interfaces via thermal annealing
journal, November 2018

  • Kiraly, Brian; Mannix, Andrew J.; Jacobberger, Robert M.
  • Applied Physics Letters, Vol. 113, Issue 21
  • DOI: 10.1063/1.5053083

Reactive intercalation and oxidation at the buried graphene-germanium interface
journal, July 2019

  • Braeuninger-Weimer, Philipp; Burton, Oliver; Weatherup, Robert S.
  • APL Materials, Vol. 7, Issue 7
  • DOI: 10.1063/1.5098351

Reactive intercalation and oxidation at the buried graphene-germanium interface
text, January 2019

  • Braeuninger-Weimer, Philipp; Burton, Oliver; Weatherup, Robert
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.41038

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.