skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Elementary kinetics of nitrogen electroreduction on Fe surfaces

Abstract

Electrochemical ammonia synthesis could provide a sustainable and efficient alternative to the energy intensive Haber-Bosch process. Development of an active and selective N2 electroreduction catalyst requires mechanism determination to aid in connecting catalyst composition and structure to performance. Density functional theory calculations are used to examine the elementary step energetics of associative N2 reduction mechanisms on two low index Fe surfaces. Interfacial water molecules in the Heyrovsky-like mechanism help lower some of the elementary activation barriers. Electrode potential dependent barriers show that cathodic potentials below -1.5 V-RHE are necessary to give a significant rate of N2 electroreduction. DFT barriers suggest a larger overpotential than expected based on elementary reaction free energies. Linear Brønsted-Evans-Polanyi relationships do not hold across N–H formation steps on these surfaces, further confirming that explicit barriers should be considered in DFT studies of the nitrogen reduction reaction.

Authors:
 [1];  [2];  [1]
  1. Pennsylvania State Univ., University Park, PA (United States). Dept. of Chemical Engineering
  2. Univ. of North Carolina, Wilmington, NC (United States). Dept. of Chemistry and Biochemistry
Publication Date:
Research Org.:
Pennsylvania State Univ., University Park, PA (United States); Univ. of North Carolina, Wilmington, NC (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); National Science Foundation (NSF)
OSTI Identifier:
1482070
Grant/Contract Number:  
SC0016529; ACI-1053575; DGE-1449785
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 150; Journal Issue: 4; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Maheshwari, Sharad, Rostamikia, Gholamreza, and Janik, Michael J. Elementary kinetics of nitrogen electroreduction on Fe surfaces. United States: N. p., 2018. Web. doi:10.1063/1.5048036.
Maheshwari, Sharad, Rostamikia, Gholamreza, & Janik, Michael J. Elementary kinetics of nitrogen electroreduction on Fe surfaces. United States. doi:10.1063/1.5048036.
Maheshwari, Sharad, Rostamikia, Gholamreza, and Janik, Michael J. Thu . "Elementary kinetics of nitrogen electroreduction on Fe surfaces". United States. doi:10.1063/1.5048036. https://www.osti.gov/servlets/purl/1482070.
@article{osti_1482070,
title = {Elementary kinetics of nitrogen electroreduction on Fe surfaces},
author = {Maheshwari, Sharad and Rostamikia, Gholamreza and Janik, Michael J.},
abstractNote = {Electrochemical ammonia synthesis could provide a sustainable and efficient alternative to the energy intensive Haber-Bosch process. Development of an active and selective N2 electroreduction catalyst requires mechanism determination to aid in connecting catalyst composition and structure to performance. Density functional theory calculations are used to examine the elementary step energetics of associative N2 reduction mechanisms on two low index Fe surfaces. Interfacial water molecules in the Heyrovsky-like mechanism help lower some of the elementary activation barriers. Electrode potential dependent barriers show that cathodic potentials below -1.5 V-RHE are necessary to give a significant rate of N2 electroreduction. DFT barriers suggest a larger overpotential than expected based on elementary reaction free energies. Linear Brønsted-Evans-Polanyi relationships do not hold across N–H formation steps on these surfaces, further confirming that explicit barriers should be considered in DFT studies of the nitrogen reduction reaction.},
doi = {10.1063/1.5048036},
journal = {Journal of Chemical Physics},
number = 4,
volume = 150,
place = {United States},
year = {2018},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Catalysts for nitrogen reduction to ammonia
journal, July 2018

  • Foster, Shelby L.; Bakovic, Sergio I. Perez; Duda, Royce D.
  • Nature Catalysis, Vol. 1, Issue 7
  • DOI: 10.1038/s41929-018-0092-7

Electron transfer, bond breaking, and bond formation
journal, September 1993

  • Saveant, Jean Michel
  • Accounts of Chemical Research, Vol. 26, Issue 9
  • DOI: 10.1021/ar00033a001

Ammonia for hydrogen storage: challenges and opportunities
journal, January 2008

  • Klerke, Asbjørn; Christensen, Claus Hviid; Nørskov, Jens K.
  • Journal of Materials Chemistry, Vol. 18, Issue 20
  • DOI: 10.1039/b720020j

Structural, electronic, and magnetic properties of bcc iron surfaces
journal, January 2007


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Ozone Oxidation of Single Walled Carbon Nanotubes from Density Functional Theory
journal, September 2009

  • Yim, Wai-Leung; Johnson, J. Karl
  • The Journal of Physical Chemistry C, Vol. 113, Issue 41
  • DOI: 10.1021/jp908089c

Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbon-Nanotube-Based Electrocatalyst
journal, January 2017

  • Chen, Shiming; Perathoner, Siglinda; Ampelli, Claudio
  • Angewandte Chemie International Edition, Vol. 56, Issue 10
  • DOI: 10.1002/anie.201609533

Electrochemical Acceleration of Ammonia Synthesis on Fe-Based Alkali-Promoted Electrocatalyst with Proton Conducting Solid Electrolyte
journal, October 2017

  • Kosaka, Fumihiko; Nakamura, Takehisa; Oikawa, Akio
  • ACS Sustainable Chemistry & Engineering, Vol. 5, Issue 11
  • DOI: 10.1021/acssuschemeng.7b02469

A theoretical evaluation of possible transition metal electro-catalysts for N 2 reduction
journal, January 2012

  • Skúlason, Egill; Bligaard, Thomas; Gudmundsdóttir, Sigrídur
  • Phys. Chem. Chem. Phys., Vol. 14, Issue 3
  • DOI: 10.1039/c1cp22271f

Selectivity of CO 2 Reduction on Copper Electrodes: The Role of the Kinetics of Elementary Steps
journal, January 2013

  • Nie, Xiaowa; Esopi, Monica R.; Janik, Michael J.
  • Angewandte Chemie International Edition, Vol. 52, Issue 9
  • DOI: 10.1002/anie.201208320

Superlinearly converging dimer method for transition state search
journal, January 2008

  • Kästner, Johannes; Sherwood, Paul
  • The Journal of Chemical Physics, Vol. 128, Issue 1
  • DOI: 10.1063/1.2815812

Activation of an Alkyl C−H Bond Geminal to an Agostic Interaction: An Unusual Mode of Base-Induced C−H Activation
journal, April 2009

  • Häller, L. Jonas L.; Page, Michael J.; Macgregor, Stuart A.
  • Journal of the American Chemical Society, Vol. 131, Issue 13
  • DOI: 10.1021/ja900953d

Hydrazine is a product of dinitrogen reduction by the vanadium-nitrogenase from Azotobacter chroococcum
journal, July 1991

  • Dilworth, M. J.; Eady, R. R.
  • Biochemical Journal, Vol. 277, Issue 2
  • DOI: 10.1042/bj2770465

First-principles based microkinetic modeling of borohydride oxidation on a Au(111) electrode
journal, November 2011


The Challenge of Electrochemical Ammonia Synthesis: A New Perspective on the Role of Nitrogen Scaling Relations
journal, June 2015

  • Montoya, Joseph H.; Tsai, Charlie; Vojvodic, Aleksandra
  • ChemSusChem, Vol. 8, Issue 13
  • DOI: 10.1002/cssc.201500322

Universal transition state scaling relations for (de)hydrogenation over transition metals
journal, January 2011

  • Wang, S.; Petzold, V.; Tripkovic, V.
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 46
  • DOI: 10.1039/c1cp20547a

Reaction mechanisms of CO2 electrochemical reduction on Cu(111) determined with density functional theory
journal, April 2014


Catalyst Design by Interpolation in the Periodic Table:  Bimetallic Ammonia Synthesis Catalysts
journal, August 2001

  • Jacobsen, Claus J. H.; Dahl, Søren; Clausen, Bjerne S.
  • Journal of the American Chemical Society, Vol. 123, Issue 34
  • DOI: 10.1021/ja010963d

How a century of ammonia synthesis changed the world
journal, September 2008

  • Erisman, Jan Willem; Sutton, Mark A.; Galloway, James
  • Nature Geoscience, Vol. 1, Issue 10
  • DOI: 10.1038/ngeo325

A climbing image nudged elastic band method for finding saddle points and minimum energy paths
journal, December 2000

  • Henkelman, Graeme; Uberuaga, Blas P.; Jónsson, Hannes
  • The Journal of Chemical Physics, Vol. 113, Issue 22, p. 9901-9904
  • DOI: 10.1063/1.1329672

Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode
journal, November 2004

  • Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 46
  • DOI: 10.1021/jp047349j

Mechanism of Molybdenum Nitrogenase
journal, January 1996

  • Burgess, Barbara K.; Lowe, David J.
  • Chemical Reviews, Vol. 96, Issue 7
  • DOI: 10.1021/cr950055x

Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points
journal, December 2000

  • Henkelman, Graeme; Jónsson, Hannes
  • The Journal of Chemical Physics, Vol. 113, Issue 22
  • DOI: 10.1063/1.1323224

Beyond fossil fuel–driven nitrogen transformations
journal, May 2018

  • Chen, Jingguang G.; Crooks, Richard M.; Seefeldt, Lance C.
  • Science, Vol. 360, Issue 6391
  • DOI: 10.1126/science.aar6611

Catalytic and electrocatalytic synthesis of NH3 in a H+ conducting cell by using an industrial Fe catalyst
journal, January 2007


A simple method to approximate electrode potential-dependent activation energies using density functional theory
journal, June 2017


Mechanism of Mo-Dependent Nitrogenase
journal, June 2009