DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Catalysts for nitrogen reduction to ammonia

Abstract

We present the production of synthetic ammonia remains dependent on the energy- and capital-intensive Haber-Bosch process. Extensive research in molecular catalysis has demonstrated ammonia production from di-nitrogen, albeit at low production rates. Mechanistic understanding of di-nitrogen reduction to ammonia continues to be delineated through study of molecular catalyst structure, as well as through understanding the naturally-occurring nitrogenase enzyme. The transition to Haber-Bosch alternatives through robust, heterogeneous catalyst surfaces remains an unsolved research challenge. Catalysts for electrochemical reduction of di-nitrogen to ammonia are a specific focus of research, due to the potential to compete with Haber-Bosch and eliminate associated carbon dioxide emissions. However, limited progress has been made, as most electrocatalyst surfaces lack specificity towards nitrogen fixation. Lastly in this review, we discuss the progress of the field in developing a mechanistic understanding of nitrogenase-promoted and molecular catalyst-promoted ammonia synthesis and provide a review of the state-of-the-art and scientific needs for heterogeneous electrocatalysts.

Authors:
 [1];  [1];  [2];  [3];  [4]; ORCiD logo [4];  [3];  [2];  [1]
  1. Univ. of Arkansas, Fayetteville, AR (United States). Ralph E. Martin Department of Chemical Engineering
  2. Case Western Reserve Univ., Cleveland, OH (United States). Department of Chemical and Biomolecular Engineering
  3. Pennsylvania State Univ., University Park, PA (United States). Department of Chemical Engineering
  4. Univ. of Utah, Salt Lake City, UT (United States). Department of Chemistry
Publication Date:
Research Org.:
Univ. of Arkansas, Fayetteville, AR (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1481881
Grant/Contract Number:  
SC0016529
Resource Type:
Accepted Manuscript
Journal Name:
Nature Catalysis
Additional Journal Information:
Journal Volume: 1; Journal Issue: 7; Journal ID: ISSN 2520-1158
Publisher:
Springer Nature
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Foster, Shelby L., Bakovic, Sergio I. Perez, Duda, Royce D., Maheshwari, Sharad, Milton, Ross D., Minteer, Shelley D., Janik, Michael J., Renner, Julie N., and Greenlee, Lauren F. Catalysts for nitrogen reduction to ammonia. United States: N. p., 2018. Web. doi:10.1038/s41929-018-0092-7.
Foster, Shelby L., Bakovic, Sergio I. Perez, Duda, Royce D., Maheshwari, Sharad, Milton, Ross D., Minteer, Shelley D., Janik, Michael J., Renner, Julie N., & Greenlee, Lauren F. Catalysts for nitrogen reduction to ammonia. United States. https://doi.org/10.1038/s41929-018-0092-7
Foster, Shelby L., Bakovic, Sergio I. Perez, Duda, Royce D., Maheshwari, Sharad, Milton, Ross D., Minteer, Shelley D., Janik, Michael J., Renner, Julie N., and Greenlee, Lauren F. Thu . "Catalysts for nitrogen reduction to ammonia". United States. https://doi.org/10.1038/s41929-018-0092-7. https://www.osti.gov/servlets/purl/1481881.
@article{osti_1481881,
title = {Catalysts for nitrogen reduction to ammonia},
author = {Foster, Shelby L. and Bakovic, Sergio I. Perez and Duda, Royce D. and Maheshwari, Sharad and Milton, Ross D. and Minteer, Shelley D. and Janik, Michael J. and Renner, Julie N. and Greenlee, Lauren F.},
abstractNote = {We present the production of synthetic ammonia remains dependent on the energy- and capital-intensive Haber-Bosch process. Extensive research in molecular catalysis has demonstrated ammonia production from di-nitrogen, albeit at low production rates. Mechanistic understanding of di-nitrogen reduction to ammonia continues to be delineated through study of molecular catalyst structure, as well as through understanding the naturally-occurring nitrogenase enzyme. The transition to Haber-Bosch alternatives through robust, heterogeneous catalyst surfaces remains an unsolved research challenge. Catalysts for electrochemical reduction of di-nitrogen to ammonia are a specific focus of research, due to the potential to compete with Haber-Bosch and eliminate associated carbon dioxide emissions. However, limited progress has been made, as most electrocatalyst surfaces lack specificity towards nitrogen fixation. Lastly in this review, we discuss the progress of the field in developing a mechanistic understanding of nitrogenase-promoted and molecular catalyst-promoted ammonia synthesis and provide a review of the state-of-the-art and scientific needs for heterogeneous electrocatalysts.},
doi = {10.1038/s41929-018-0092-7},
journal = {Nature Catalysis},
number = 7,
volume = 1,
place = {United States},
year = {2018},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 85 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Exploring the limits: A low-pressure, low-temperature Haber–Bosch process
journal, April 2014


Localization of a Catalytic Intermediate Bound to the FeMo-cofactor of Nitrogenase
journal, June 2004

  • Igarashi, Robert Y.; Dos Santos, Patricia C.; Niehaus, Walter G.
  • Journal of Biological Chemistry, Vol. 279, Issue 33
  • DOI: 10.1074/jbc.M403194200

The Effect of Lanthanide Oxides as a Support for Ruthenium Catalysts in Ammonia Synthesis
journal, August 1996


Insight into the Iron–Molybdenum Cofactor of Nitrogenase from Synthetic Iron Complexes with Sulfur, Carbon, and Hydride Ligands
journal, June 2016

  • Čorić, Ilija; Holland, Patrick L.
  • Journal of the American Chemical Society, Vol. 138, Issue 23
  • DOI: 10.1021/jacs.6b00747

Au Sub-Nanoclusters on TiO 2 toward Highly Efficient and Selective Electrocatalyst for N 2 Conversion to NH 3 at Ambient Conditions
journal, February 2017


Trapping H - Bound to the Nitrogenase FeMo-Cofactor Active Site during H 2 Evolution:  Characterization by ENDOR Spectroscopy
journal, May 2005

  • Igarashi, Robert Y.; Laryukhin, Mikhail; Dos Santos, Patricia C.
  • Journal of the American Chemical Society, Vol. 127, Issue 17
  • DOI: 10.1021/ja043596p

Nitrogen Fixation via a Terminal Fe(IV) Nitride
journal, October 2017

  • Thompson, Niklas B.; Green, Michael T.; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 139, Issue 43
  • DOI: 10.1021/jacs.7b09364

Wind to Ammonia: Electrochemical Processes in Room Temperature Ionic Liquids
conference, January 2009

  • Pappenfus, Ted M.; Lee, Kyung-mee; Thoma, Laura M.
  • 214th ECS Meeting, ECS Transactions
  • DOI: 10.1149/1.3159311

Mechanism of Nitrogen Fixation by Nitrogenase: The Next Stage
journal, January 2014

  • Hoffman, Brian M.; Lukoyanov, Dmitriy; Yang, Zhi-Yong
  • Chemical Reviews, Vol. 114, Issue 8
  • DOI: 10.1021/cr400641x

On the rate-determining step and the role of potassium in the catalytic synthesis of ammonia
journal, January 1992


N 2 -to-NH 3 Conversion by a triphos-Iron Catalyst and Enhanced Turnover under Photolysis
journal, May 2017

  • Buscagan, Trixia M.; Oyala, Paul H.; Peters, Jonas C.
  • Angewandte Chemie International Edition, Vol. 56, Issue 24
  • DOI: 10.1002/anie.201703244

Cooperativity Between Low-Valent Iron and Potassium Promoters in Dinitrogen Fixation
journal, April 2012

  • Figg, Travis M.; Holland, Patrick L.; Cundari, Thomas R.
  • Inorganic Chemistry, Vol. 51, Issue 14
  • DOI: 10.1021/ic300150u

Iron-catalysed transformation of molecular dinitrogen into silylamine under ambient conditions
journal, January 2012

  • Yuki, Masahiro; Tanaka, Hiromasa; Sasaki, Kouitsu
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms2264

Electrolytic Synthesis of Ammonia in Molten Salts under Atmospheric Pressure
journal, January 2003

  • Murakami, Tsuyoshi; Nishikiori, Tokujiro; Nohira, Toshiyuki
  • Journal of the American Chemical Society, Vol. 125, Issue 2
  • DOI: 10.1021/ja028891t

Catalytic transformation of dinitrogen into ammonia and hydrazine by iron-dinitrogen complexes bearing pincer ligand
journal, July 2016

  • Kuriyama, Shogo; Arashiba, Kazuya; Nakajima, Kazunari
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12181

Ligand binding to the FeMo-cofactor: Structures of CO-bound and reactivated nitrogenase
journal, September 2014


Triggering N2 uptake via redox-induced expulsion of coordinated NH3 and N2 silylation at trigonal bipyramidal iron
journal, May 2010

  • Lee, Yunho; Mankad, Neal P.; Peters, Jonas C.
  • Nature Chemistry, Vol. 2, Issue 7
  • DOI: 10.1038/nchem.660

Electron Transfer within Nitrogenase: Evidence for a Deficit-Spending Mechanism
journal, November 2011

  • Danyal, Karamatullah; Dean, Dennis R.; Hoffman, Brian M.
  • Biochemistry, Vol. 50, Issue 43
  • DOI: 10.1021/bi201003a

Evaluating Molecular Cobalt Complexes for the Conversion of N 2 to NH 3
journal, May 2015


Ammonia synthesis catalyst 100 years: Practice, enlightenment and challenge
journal, October 2014


The importance of C7 sites and surface roughness in the ammonia synthesis reaction over iron
journal, January 1987


Process Intensification in Ammonia Synthesis Using Novel Coassembled Supported Microporous Catalysts Promoted by Nonthermal Plasma
journal, January 2017


Mechanistic insights into nitrogen fixation by nitrogenase enzymes
journal, January 2015

  • Varley, J. B.; Wang, Y.; Chan, K.
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 44
  • DOI: 10.1039/C5CP04034E

The discovery of Mo(III) in FeMoco: reuniting enzyme and model chemistry
journal, December 2014

  • Bjornsson, Ragnar; Neese, Frank; Schrock, Richard R.
  • JBIC Journal of Biological Inorganic Chemistry, Vol. 20, Issue 2
  • DOI: 10.1007/s00775-014-1230-6

Remarkable catalytic activity of dinitrogen-bridged dimolybdenum complexes bearing NHC-based PCP-pincer ligands toward nitrogen fixation
journal, April 2017

  • Eizawa, Aya; Arashiba, Kazuya; Tanaka, Hiromasa
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14874

Mechanism of Mo-Dependent Nitrogenase
journal, June 2009


Spectroscopic Evidence for Changes in the Redox State of the Nitrogenase P-Cluster during Turnover
journal, May 1999

  • Chan, Jeannine M.; Christiansen, Jason; Dean, Dennis R.
  • Biochemistry, Vol. 38, Issue 18
  • DOI: 10.1021/bi982866b

Alkali Metal Control over N–N Cleavage in Iron Complexes
journal, November 2014

  • Grubel, Katarzyna; Brennessel, William W.; Mercado, Brandon Q.
  • Journal of the American Chemical Society, Vol. 136, Issue 48
  • DOI: 10.1021/ja507442b

A Multi-iron System Capable of Rapid N 2 Formation and N 2 Cleavage
journal, July 2014

  • MacLeod, K. Cory; Vinyard, David J.; Holland, Patrick L.
  • Journal of the American Chemical Society, Vol. 136, Issue 29
  • DOI: 10.1021/ja505193z

Identification of a spin-coupled Mo( iii ) in the nitrogenase iron–molybdenum cofactor
journal, January 2014

  • Bjornsson, Ragnar; Lima, Frederico A.; Spatzal, Thomas
  • Chem. Sci., Vol. 5, Issue 8
  • DOI: 10.1039/C4SC00337C

Graphitic Nanofilaments as Novel Support of Ru–Ba Catalysts for Ammonia Synthesis
journal, October 2002


Ammonia Synthesis Catalyzed by Ruthenium Supported on Basic Zeolites
journal, September 1996

  • Fishel, Christopher T.; Davis, Robert J.; Garces, Juan M.
  • Journal of Catalysis, Vol. 163, Issue 1
  • DOI: 10.1006/jcat.1996.0314

A Synthetic Single-Site Fe Nitrogenase: High Turnover, Freeze-Quench 57 Fe Mössbauer Data, and a Hydride Resting State
journal, January 2016

  • Del Castillo, Trevor J.; Thompson, Niklas B.; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 138, Issue 16
  • DOI: 10.1021/jacs.6b01706

Challenges in reduction of dinitrogen by proton and electron transfer
journal, January 2014

  • van der Ham, Cornelis J. M.; Koper, Marc T. M.; Hetterscheid, Dennis G. H.
  • Chem. Soc. Rev., Vol. 43, Issue 15
  • DOI: 10.1039/C4CS00085D

Alkyne substrate interaction within the nitrogenase MoFe protein
journal, November 2007

  • Dos Santos, Patricia C.; Mayer, Suzanne M.; Barney, Brett M.
  • Journal of Inorganic Biochemistry, Vol. 101, Issue 11-12
  • DOI: 10.1016/j.jinorgbio.2007.05.007

Reduction of Dinitrogen to Ammonia Catalyzed by Molybdenum Diamido Complexes
journal, June 2017

  • Wickramasinghe, Lasantha A.; Ogawa, Takaya; Schrock, Richard R.
  • Journal of the American Chemical Society, Vol. 139, Issue 27
  • DOI: 10.1021/jacs.7b04800

A theoretical evaluation of possible transition metal electro-catalysts for N 2 reduction
journal, January 2012

  • Skúlason, Egill; Bligaard, Thomas; Gudmundsdóttir, Sigrídur
  • Phys. Chem. Chem. Phys., Vol. 14, Issue 3
  • DOI: 10.1039/C1CP22271F

Recent developments in the homogeneous reduction of dinitrogen by molybdenum and iron
journal, May 2013

  • MacLeod, K. Cory; Holland, Patrick L.
  • Nature Chemistry, Vol. 5, Issue 7
  • DOI: 10.1038/nchem.1620

Ru-Loaded C12A7:e Electride as a Catalyst for Ammonia Synthesis
journal, February 2017


Low temperature ruthenium catalyst for ammonia synthesis supported on BaCeO3 nanocrystals
journal, May 2010


Bioelectrochemical Haber-Bosch Process: An Ammonia-Producing H 2 /N 2 Fuel Cell
journal, February 2017

  • Milton, Ross D.; Cai, Rong; Abdellaoui, Sofiene
  • Angewandte Chemie International Edition, Vol. 56, Issue 10
  • DOI: 10.1002/anie.201612500

Catalytic Reduction of N 2 to NH 3 by an Fe–N 2 Complex Featuring a C-Atom Anchor
journal, January 2014

  • Creutz, Sidney E.; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 136, Issue 3
  • DOI: 10.1021/ja4114962

Support effects on the catalytic activity and selectivity of ruthenium in CO and N2 activation
journal, January 1982

  • Bossi, Alessandro; Garbassi, Fabio; Petrini, Guido
  • Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, Vol. 78, Issue 4
  • DOI: 10.1039/f19827801029

Investigation of N2-fixation on polyaniline electrodes in methanol by electrochemical impedance spectroscopy
journal, December 2010

  • Köleli, Fatih; Röpke, Derya; Aydin, Rezzan
  • Journal of Applied Electrochemistry, Vol. 41, Issue 4
  • DOI: 10.1007/s10800-010-0250-3

Synthesis, Characterization, and Nitrogenase-Relevant Reactions of an Iron Sulfide Complex with a Bridging Hydride
journal, October 2015

  • Arnet, Nicholas A.; Dugan, Thomas R.; Menges, Fabian S.
  • Journal of the American Chemical Society, Vol. 137, Issue 41
  • DOI: 10.1021/jacs.5b06841

Studies of Low-Coordinate Iron Dinitrogen Complexes
journal, January 2006

  • Smith, Jeremy M.; Sadique, Azwana R.; Cundari, Thomas R.
  • Journal of the American Chemical Society, Vol. 128, Issue 3
  • DOI: 10.1021/ja052707x

N2 Reduction and Hydrogenation to Ammonia by a Molecular Iron-Potassium Complex
journal, November 2011


Catalytic Reduction of Dinitrogen to Ammonia by Molybdenum: Theory versus Experiment
journal, June 2008

  • Schrock, Richard R.
  • Angewandte Chemie International Edition, Vol. 47, Issue 30
  • DOI: 10.1002/anie.200705246

Surface characterization of ammonia synthesis catalysts
journal, February 1983


Dinitrogen Activation by Group 4 Metal Complexes
journal, April 2007

  • Ohki, Yasuhiro; Fryzuk, Michael D.
  • Angewandte Chemie International Edition, Vol. 46, Issue 18
  • DOI: 10.1002/anie.200605245

Alkali Metal Variation and Twisting of the FeNNFe Core in Bridging Diiron Dinitrogen Complexes
journal, March 2016


From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis
journal, August 2015


Ruthenium catalysts for ammonia synthesis at high pressures: Preparation, characterization, and power-law kinetics
journal, April 1997


The controlled relay of multiple protons required at the active site of nitrogenase
journal, January 2012


Calculated details of a mechanism for conversion of N2 to NH3 at the FeMo cluster of nitrogenase
journal, January 1997


Evidence That the P i Release Event Is the Rate-Limiting Step in the Nitrogenase Catalytic Cycle
journal, June 2016


Catalytic Nitrogen-to-Ammonia Conversion by Osmium and Ruthenium Complexes
journal, November 2017

  • Fajardo, Javier; Peters, Jonas C.
  • Journal of the American Chemical Society, Vol. 139, Issue 45
  • DOI: 10.1021/jacs.7b10204

Boron Nitride: A Novel Support for Ruthenium-Based Ammonia Synthesis Catalysts
journal, May 2001


Electrochemical Synthesis of NH 3 at Low Temperature and Atmospheric Pressure Using a γ-Fe 2 O 3 Catalyst
journal, October 2017


Synergistic Effect of MgO and CeO2 as a Support for Ruthenium Catalysts in Ammonia Synthesis
journal, February 2006


Direct Transformation of Molecular Dinitrogen into Ammonia Catalyzed by Cobalt Dinitrogen Complexes Bearing Anionic PNP Pincer Ligands
journal, August 2016

  • Kuriyama, Shogo; Arashiba, Kazuya; Tanaka, Hiromasa
  • Angewandte Chemie International Edition, Vol. 55, Issue 46
  • DOI: 10.1002/anie.201606090

Electrochemical Nitrogen Reduction Reaction on Noble Metal Catalysts in Proton and Hydroxide Exchange Membrane Electrolyzers
journal, January 2017

  • Nash, Jared; Yang, Xuan; Anibal, Jacob
  • Journal of The Electrochemical Society, Vol. 164, Issue 14
  • DOI: 10.1149/2.0071802jes

Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids
journal, January 2017

  • Zhou, Fengling; Azofra, Luis Miguel; Ali, Muataz
  • Energy & Environmental Science, Vol. 10, Issue 12
  • DOI: 10.1039/C7EE02716H

Catalytic N 2 -to-NH 3 Conversion by Fe at Lower Driving Force: A Proposed Role for Metallocene-Mediated PCET
journal, February 2017

  • Chalkley, Matthew J.; Del Castillo, Trevor J.; Matson, Benjamin D.
  • ACS Central Science, Vol. 3, Issue 3
  • DOI: 10.1021/acscentsci.7b00014

On the feasibility of N2 fixation via a single-site FeI/FeIV cycle: Spectroscopic studies of FeI(N2)FeI, FeIVN, and related species
journal, November 2006

  • Hendrich, M. P.; Gunderson, W.; Behan, R. K.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 46
  • DOI: 10.1073/pnas.0604402103

Uncoupling Nitrogenase: Catalytic Reduction of Hydrazine to Ammonia by a MoFe Protein in the Absence of Fe Protein-ATP
journal, September 2010

  • Danyal, Karamatullah; Inglet, Boyd S.; Vincent, Kylie A.
  • Journal of the American Chemical Society, Vol. 132, Issue 38
  • DOI: 10.1021/ja1067178

Nitrogenase bioelectrocatalysis: heterogeneous ammonia and hydrogen production by MoFe protein
journal, January 2016

  • Milton, Ross D.; Abdellaoui, Sofiene; Khadka, Nimesh
  • Energy & Environmental Science, Vol. 9, Issue 8
  • DOI: 10.1039/C6EE01432A

Research inspired by the chemistry of nitrogenase — Novel metal complexes and their reactivity toward dinitrogen, nitriles, and alkynes
journal, April 2005

  • Hidai, Masanobu; Mizobe, Yasushi
  • Canadian Journal of Chemistry, Vol. 83, Issue 4
  • DOI: 10.1139/v05-016

Coadsorption of oxygen and hydrogen on ruthenium(001): blocking and electronic effects of preadsorbed oxygen
journal, November 1986


Selective Catalytic Reduction of N 2 to N 2 H 4 by a Simple Fe Complex
journal, October 2016

  • Hill, Peter J.; Doyle, Laurence R.; Crawford, Andrew D.
  • Journal of the American Chemical Society, Vol. 138, Issue 41
  • DOI: 10.1021/jacs.6b08802

The Kinetics of Ammonia Synthesis over Ruthenium-Based Catalysts: The Role of Barium and Cesium
journal, January 2002

  • Szmigiel, Dariusz; Bielawa, Hubert; Kurtz, Melanie
  • Journal of Catalysis, Vol. 205, Issue 1
  • DOI: 10.1006/jcat.2001.3431

Multimetallic cooperativity in activation of dinitrogen at iron–potassium sites
journal, January 2014

  • Chiang, Karen P.; Bellows, Sarina M.; Brennessel, William W.
  • Chem. Sci., Vol. 5, Issue 1
  • DOI: 10.1039/C3SC52487F

Preparation and reactivity of iron complexes bearing anionic carbazole-based PNP-type pincer ligands toward catalytic nitrogen fixation
journal, January 2018

  • Higuchi, Junichi; Kuriyama, Shogo; Eizawa, Aya
  • Dalton Transactions, Vol. 47, Issue 4
  • DOI: 10.1039/C7DT04327A

Electron transfer in nitrogenase catalysis
journal, April 2012

  • Seefeldt, Lance C.; Hoffman, Brian M.; Dean, Dennis R.
  • Current Opinion in Chemical Biology, Vol. 16, Issue 1-2
  • DOI: 10.1016/j.cbpa.2012.02.012

Binding of dinitrogen to an iron–sulfur–carbon site
journal, September 2015

  • Čorić, Ilija; Mercado, Brandon Q.; Bill, Eckhard
  • Nature, Vol. 526, Issue 7571
  • DOI: 10.1038/nature15246

Role for the nitrogenase MoFe protein α-subunit in FeMo-cofactor binding and catalysis
journal, January 1990

  • Scott, Deborah J.; May, Harold D.; Newton, William E.
  • Nature, Vol. 343, Issue 6254
  • DOI: 10.1038/343188a0

Role of the MoFe Protein .alpha.-Subunit Histidine-195 Residue in FeMo-cofactor Binding and Nitrogenase Catalysis
journal, March 1995

  • Kim, Chul-Hwan; Newton, William E.; Dean, Dennis R.
  • Biochemistry, Vol. 34, Issue 9
  • DOI: 10.1021/bi00009a008

Catalytic Reduction of Dinitrogen to Ammonia by Use of Molybdenum–Nitride Complexes Bearing a Tridentate Triphosphine as Catalysts
journal, April 2015

  • Arashiba, Kazuya; Kinoshita, Eriko; Kuriyama, Shogo
  • Journal of the American Chemical Society, Vol. 137, Issue 17
  • DOI: 10.1021/jacs.5b02579

The Challenge of Electrochemical Ammonia Synthesis: A New Perspective on the Role of Nitrogen Scaling Relations
journal, June 2015

  • Montoya, Joseph H.; Tsai, Charlie; Vojvodic, Aleksandra
  • ChemSusChem, Vol. 8, Issue 13
  • DOI: 10.1002/cssc.201500322

Dinitrogen Binding and Cleavage by Multinuclear Iron Complexes
journal, June 2015


Universal transition state scaling relations for (de)hydrogenation over transition metals
journal, January 2011

  • Wang, S.; Petzold, V.; Tripkovic, V.
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 46
  • DOI: 10.1039/c1cp20547a

The Genesis and Development of the Commercial BP Doubly Promoted Catalyst for Ammonia Synthesis
journal, March 2014


57 Fe ENDOR Spectroscopy and ‘Electron Inventory’ Analysis of the Nitrogenase E 4 Intermediate Suggest the Metal-Ion Core of FeMo-Cofactor Cycles Through Only One Redox Couple
journal, November 2011

  • Doan, Peter E.; Telser, Joshua; Barney, Brett M.
  • Journal of the American Chemical Society, Vol. 133, Issue 43
  • DOI: 10.1021/ja205304t

Functionalization and cleavage of coordinated dinitrogen via hydroboration using primary and secondary boranes
journal, April 2005

  • MacKay, Bruce A.; Johnson, Samuel A.; Patrick, Brian O.
  • Canadian Journal of Chemistry, Vol. 83, Issue 4
  • DOI: 10.1139/v04-161

Catalytic Reduction of Dinitrogen to Ammonia at a Single Molybdenum Center
journal, July 2003


Evidence for Interstitial Carbon in Nitrogenase FeMo Cofactor
journal, November 2011


Catalytic Nitrogen Fixation via Direct Cleavage of Nitrogen–Nitrogen Triple Bond of Molecular Dinitrogen under Ambient Reaction Conditions
journal, October 2017

  • Arashiba, Kazuya; Eizawa, Aya; Tanaka, Hiromasa
  • Bulletin of the Chemical Society of Japan, Vol. 90, Issue 10
  • DOI: 10.1246/bcsj.20170197

Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3
journal, August 2014


Substrate Interaction at an Iron-Sulfur Face of the FeMo-cofactor during Nitrogenase Catalysis
journal, October 2004

  • Barney, Brett M.; Igarashi, Robert Y.; Dos Santos, Patricia C.
  • Journal of Biological Chemistry, Vol. 279, Issue 51
  • DOI: 10.1074/jbc.M410247200

The hydride route to the preparation of dinitrogen complexes
journal, January 2010

  • Ballmann, Joachim; Munhá, Rui F.; Fryzuk, Michael D.
  • Chemical Communications, Vol. 46, Issue 7
  • DOI: 10.1039/b922853e

Unique behaviour of dinitrogen-bridged dimolybdenum complexes bearing pincer ligand towards catalytic formation of ammonia
journal, April 2014

  • Tanaka, Hiromasa; Arashiba, Kazuya; Kuriyama, Shogo
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4737

Room-Temperature Electrocatalytic Synthesis of NH 3 from H 2 O and N 2 in a Gas–Liquid–Solid Three-Phase Reactor
journal, July 2017

  • Chen, Shiming; Perathoner, Siglinda; Ampelli, Claudio
  • ACS Sustainable Chemistry & Engineering, Vol. 5, Issue 8
  • DOI: 10.1021/acssuschemeng.7b01742

Bioelectrochemical Haber-Bosch Process: An Ammonia-Producing H 2 /N 2 Fuel Cell
journal, February 2017

  • Milton, Ross D.; Cai, Rong; Abdellaoui, Sofiene
  • Angewandte Chemie, Vol. 129, Issue 10
  • DOI: 10.1002/ange.201612500

Electrolytic Synthesis of Ammonia in Molten Salts under Atmospheric Pressure.
journal, May 2003

  • Murakami, Tsuyoshi; Nishikiori, Tokujiro; Nohira, Toshiyuki
  • ChemInform, Vol. 34, Issue 18
  • DOI: 10.1002/chin.200318020

Dinitrogen Activation by Group 4 Metal Complexes
journal, July 2007


Catalytic Reduction of Dinitrogen to Ammonia at a Single Molybdenum Center
journal, January 2006

  • Schrock, Richard R.
  • Accounts of Chemical Research, Vol. 39, Issue 2
  • DOI: 10.1021/ar068000c

Direct Transformation of Molecular Dinitrogen into Ammonia Catalyzed by Cobalt Dinitrogen Complexes Bearing Anionic PNP Pincer Ligands
journal, August 2016

  • Kuriyama, Shogo; Arashiba, Kazuya; Tanaka, Hiromasa
  • Angewandte Chemie, Vol. 128, Issue 46
  • DOI: 10.1002/ange.201606090

N 2 -to-NH 3 Conversion by a triphos-Iron Catalyst and Enhanced Turnover under Photolysis
journal, May 2017

  • Buscagan, Trixia M.; Oyala, Paul H.; Peters, Jonas C.
  • Angewandte Chemie, Vol. 129, Issue 24
  • DOI: 10.1002/ange.201703244

Catalytic Reduction of Dinitrogen to Ammonia at a Single Molybdenum Center
journal, December 2005

  • Schrock, Richard R.
  • Accounts of Chemical Research, Vol. 38, Issue 12
  • DOI: 10.1021/ar0501121

Works referencing / citing this record:

Carbon‐Based Metal‐Free Catalysts for Electrocatalytic Reduction of Nitrogen for Synthesis of Ammonia at Ambient Conditions
journal, January 2019


Photo(electro)catalytic Nitrogen Fixation: Problems and Possibilities
journal, April 2019

  • Vu, Manh‐Hiep; Sakar, Mohan; Hassanzadeh‐Tabrizi, Sayed Ali
  • Advanced Materials Interfaces, Vol. 6, Issue 12
  • DOI: 10.1002/admi.201900091

Vacancy in Ultrathin 2D Nanomaterials toward Sustainable Energy Application
journal, November 2019

  • Bai, Fan; Xu, Liang; Zhai, Xiaoying
  • Advanced Energy Materials, Vol. 10, Issue 11
  • DOI: 10.1002/aenm.201902107

Metal‐Ligand Cooperative Synthesis of Benzonitrile by Electrochemical Reduction and Photolytic Splitting of Dinitrogen
journal, December 2018


Controlled Incorporation of Nitrides into W‐Fe‐S Clusters
journal, September 2019


Nanoporous Gold Embedded ZIF Composite for Enhanced Electrochemical Nitrogen Fixation
journal, October 2019

  • Yang, Yijie; Wang, Shu‐Qi; Wen, Haoming
  • Angewandte Chemie International Edition, Vol. 58, Issue 43
  • DOI: 10.1002/anie.201909770

Single‐Atom Catalysts for the Electrocatalytic Reduction of Nitrogen to Ammonia under Ambient Conditions
journal, July 2019


Electrochemical Fabrication of Porous Au Film on Ni Foam for Nitrogen Reduction to Ammonia
journal, January 2019


Defect Engineering Strategies for Nitrogen Reduction Reactions under Ambient Conditions
journal, October 2018


Recent Progress on Electrocatalyst and Photocatalyst Design for Nitrogen Reduction
journal, October 2018


Back-bonding between an electron-poor, high-oxidation-state metal and poor π-acceptor ligand in a uranium(v)–dinitrogen complex
journal, August 2019


Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia
journal, March 2019


Metallo-supramolecular assembly of protic pincer-type complexes: encapsulation of dinitrogen and carbon disulfide into a multiproton-responsive diruthenium cage
journal, January 2019

  • Toda, Tatsuro; Suzuki, Satoshi; Kuwata, Shigeki
  • Chemical Communications, Vol. 55, Issue 8
  • DOI: 10.1039/c8cc08384c

Artificial photosynthesis: opportunities and challenges of molecular catalysts
journal, January 2019

  • Zhang, Biaobiao; Sun, Licheng
  • Chemical Society Reviews, Vol. 48, Issue 7
  • DOI: 10.1039/c8cs00897c

Elementary kinetics of nitrogen electroreduction to ammonia on late transition metals
journal, January 2019

  • Rostamikia, Gholamreza; Maheshwari, Sharad; Janik, Michael J.
  • Catalysis Science & Technology, Vol. 9, Issue 1
  • DOI: 10.1039/c8cy01845f

Metal–organic framework-derived shuttle-like V 2 O 3 /C for electrocatalytic N 2 reduction under ambient conditions
journal, January 2019

  • Zhang, Rong; Han, Jingrui; Zheng, Baozhan
  • Inorganic Chemistry Frontiers, Vol. 6, Issue 2
  • DOI: 10.1039/c8qi01145a

A boron-interstitial doped C 2 N layer as a metal-free electrocatalyst for N 2 fixation: a computational study
journal, January 2019

  • Ji, Shuang; Wang, Zhongxu; Zhao, Jingxiang
  • Journal of Materials Chemistry A, Vol. 7, Issue 5
  • DOI: 10.1039/c8ta10497b

Recent progress in electrocatalytic nitrogen reduction
journal, January 2019

  • Guo, Xiaoxi; Du, Huitong; Qu, Fengli
  • Journal of Materials Chemistry A, Vol. 7, Issue 8
  • DOI: 10.1039/c8ta11201k

Electrocatalytic N 2 -to-NH 3 conversion with high faradaic efficiency enabled using a Bi nanosheet array
journal, January 2019

  • Zhang, Rong; Ji, Lei; Kong, Wenhan
  • Chemical Communications, Vol. 55, Issue 36
  • DOI: 10.1039/c9cc01703h

Boron-doped silver nanosponges with enhanced performance towards electrocatalytic nitrogen reduction to ammonia
journal, January 2019

  • Li, Yinghao; Yu, Hongjie; Wang, Ziqiang
  • Chemical Communications, Vol. 55, Issue 98
  • DOI: 10.1039/c9cc07232b

Boron and nitrogen dual-doped carbon nanospheres for efficient electrochemical reduction of N 2 to NH 3
journal, January 2020

  • Xiao, Shenglin; Luo, Fang; Hu, Hao
  • Chemical Communications, Vol. 56, Issue 3
  • DOI: 10.1039/c9cc07708a

How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully
journal, January 2019

  • Tang, Cheng; Qiao, Shi-Zhang
  • Chemical Society Reviews, Vol. 48, Issue 12
  • DOI: 10.1039/c9cs00280d

Single atom electrocatalysts supported on graphene or graphene-like carbons
journal, January 2019

  • Fei, Huilong; Dong, Juncai; Chen, Dongliang
  • Chemical Society Reviews, Vol. 48, Issue 20
  • DOI: 10.1039/c9cs00422j

Single molybdenum atom anchored on 2D Ti 2 NO 2 MXene as a promising electrocatalyst for N 2 fixation
journal, January 2019

  • Cheng, Yuwen; Dai, Jianhong; Song, Yan
  • Nanoscale, Vol. 11, Issue 39
  • DOI: 10.1039/c9nr05402b

Coupling Cu with Au for enhanced electrocatalytic activity of nitrogen reduction reaction
journal, January 2020

  • Liu, Yongqin; Huang, Liang; Zhu, Xinyang
  • Nanoscale, Vol. 12, Issue 3
  • DOI: 10.1039/c9nr08788e

Theoretical screening of efficient single-atom catalysts for nitrogen fixation based on a defective BN monolayer
journal, January 2020

  • Ma, Zuju; Cui, Zhitao; Xiao, Chengwei
  • Nanoscale, Vol. 12, Issue 3
  • DOI: 10.1039/c9nr08969a

Pt-embedded in monolayer g-C 3 N 4 as a promising single-atom electrocatalyst for ammonia synthesis
journal, January 2019

  • Yin, Hui; Li, Shu-Long; Gan, Li-Yong
  • Journal of Materials Chemistry A, Vol. 7, Issue 19
  • DOI: 10.1039/c9ta01624d

Ambient dinitrogen electrocatalytic reduction for ammonia synthesis
journal, January 2019

  • Chen, Aling; Xia, Bao Yu
  • Journal of Materials Chemistry A, Vol. 7, Issue 41
  • DOI: 10.1039/c9ta05505c

Facile, cost-effective plasma synthesis of self-supportive FeS x on Fe foam for efficient electrochemical reduction of N 2 under ambient conditions
journal, January 2019

  • Xiong, Wei; Guo, Zheng; Zhao, Shijun
  • Journal of Materials Chemistry A, Vol. 7, Issue 34
  • DOI: 10.1039/c9ta07790a

Fe nanodot-decorated MoS 2 nanosheets on carbon cloth: an efficient and flexible electrode for ambient ammonia synthesis
journal, January 2019

  • Zhao, Xinhui; Zhang, Xu; Xue, Zhimin
  • Journal of Materials Chemistry A, Vol. 7, Issue 48
  • DOI: 10.1039/c9ta09264a

W supported on g-CN manifests high activity and selectivity for N 2 electroreduction to NH 3
journal, January 2020

  • Wang, Shuhua; Wei, Wei; Lv, Xingshuai
  • Journal of Materials Chemistry A, Vol. 8, Issue 3
  • DOI: 10.1039/c9ta10935h

Theory and experiments join forces to characterize the electrocatalytic interface
journal, March 2019

  • Steinmann, Stephan N.; Wei, Zi-Yang; Sautet, Philippe
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 16
  • DOI: 10.1073/pnas.1903412116

Complete cleavage of the N≡N triple bond by Ta 2 N + via degenerate ligand exchange at ambient temperature: A perfect catalytic cycle
journal, October 2019

  • Geng, Caiyun; Li, Jilai; Weiske, Thomas
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 43
  • DOI: 10.1073/pnas.1913664116

Investigating the operation parameters for ammonia synthesis in dielectric barrier discharge reactors
journal, October 2019

  • Li, S.; van Raak, T.; Gallucci, F.
  • Journal of Physics D: Applied Physics, Vol. 53, Issue 1
  • DOI: 10.1088/1361-6463/ab4b37

Adsorbing and Activating N 2 on Heterogeneous Au–Fe 3 O 4 Nanoparticles for N 2 Fixation
journal, November 2019

  • Zhang, Jin; Ji, Yujin; Wang, Pengtang
  • Advanced Functional Materials, Vol. 30, Issue 4
  • DOI: 10.1002/adfm.201906579

Atomic Modulation, Structural Design, and Systematic Optimization for Efficient Electrochemical Nitrogen Reduction
journal, January 2020


Metal-free N, S co-doped graphene for efficient and durable nitrogen reduction reaction
journal, March 2019


In2O3 nanoparticle-reduced graphene oxide hybrid for electrocatalytic nitrogen fixation: Computational and experimental studies
journal, December 2019


Ag nanoparticles-reduced graphene oxide hybrid: an efficient electrocatalyst for artificial N2 fixation to NH3 at ambient conditions
journal, January 2020


Trimetallic PdCuIr with long-spined sea-urchin-like morphology for ambient electroreduction of nitrogen to ammonia
journal, January 2019

  • Kumar, Rajaiah Dhilip; Wang, Ziqiang; Li, Chunjie
  • Journal of Materials Chemistry A, Vol. 7, Issue 7
  • DOI: 10.1039/c8ta10562f

Morphology-dependent electrocatalytic nitrogen reduction on Ag triangular nanoplates
journal, January 2019

  • Gao, Wen-Yan; Hao, Yu-Chen; Su, Xin
  • Chemical Communications, Vol. 55, Issue 72
  • DOI: 10.1039/c9cc04691g

Ceria-reduced graphene oxide nanocomposite as an efficient electrocatalyst towards artificial N 2 conversion to NH 3 under ambient conditions
journal, January 2019

  • Xie, Hongtao; Geng, Qin; Li, Xin
  • Chemical Communications, Vol. 55, Issue 72
  • DOI: 10.1039/c9cc05309c

Bimetallic Ag 3 Cu porous networks for ambient electrolysis of nitrogen to ammonia
journal, January 2019

  • Yu, Hongjie; Wang, Ziqiang; Yang, Dandan
  • Journal of Materials Chemistry A, Vol. 7, Issue 20
  • DOI: 10.1039/c9ta03297e

Synergistic electrocatalytic N 2 reduction using a PTCA nanorod–rGO hybrid
journal, January 2019

  • Li, Peipei; Wang, Jianwei; Chen, Hongyu
  • Journal of Materials Chemistry A, Vol. 7, Issue 20
  • DOI: 10.1039/c9ta03654g

Electron distribution tuning of fluorine-doped carbon for ammonia electrosynthesis
journal, January 2019

  • Yuan, Di; Wei, Zengxi; Han, Peng
  • Journal of Materials Chemistry A, Vol. 7, Issue 28
  • DOI: 10.1039/c9ta04141a

Single-atom catalysts templated by metal–organic frameworks for electrochemical nitrogen reduction
journal, January 2019

  • Zhang, Rui; Jiao, Long; Yang, Weijie
  • Journal of Materials Chemistry A, Vol. 7, Issue 46
  • DOI: 10.1039/c9ta10206j

A vanadium–nickel oxynitride layer for enhanced electrocatalytic nitrogen fixation in neutral media
journal, January 2020

  • Chang, Bin; Deng, Lequan; Wang, Shouzhi
  • Journal of Materials Chemistry A, Vol. 8, Issue 1
  • DOI: 10.1039/c9ta11378a

Selective Electrochemical Reduction of Nitrogen to Ammonia by Adjusting the Three-Phase Interface
journal, November 2019


Metal-Ligand Cooperative Synthesis of Benzonitrile by Electrochemical Reduction and Photolytic Splitting of Dinitrogen
journal, December 2018

  • Schendzielorz, Florian; Finger, Markus; Abbenseth, Josh
  • Angewandte Chemie International Edition, Vol. 58, Issue 3
  • DOI: 10.1002/anie.201812125

Controlled Incorporation of Nitrides into W-Fe-S Clusters
journal, September 2019

  • Xu, Gan; Zhou, Jie; Wang, Zheng
  • Angewandte Chemie International Edition, Vol. 58, Issue 46
  • DOI: 10.1002/anie.201908968

Development of catalytic nitrogen fixation using transition metal–dinitrogen complexes under mild reaction conditions
journal, January 2018


Predicting two-dimensional pentagonal transition metal monophosphides for efficient electrocatalytic nitrogen reduction
journal, January 2019

  • Ying, Yiran; Fan, Ke; Luo, Xin
  • Journal of Materials Chemistry A, Vol. 7, Issue 18
  • DOI: 10.1039/c8ta11605a

Tuning the Catalytic Preference of Ruthenium Catalysts for Nitrogen Reduction by Atomic Dispersion
journal, November 2019


Nanoporous Gold Embedded ZIF Composite for Enhanced Electrochemical Nitrogen Fixation
journal, September 2019


Bimetallic Cooperative Cleavage of Dinitrogen to Nitride and Tandem Frustrated Lewis Pair Hydrogenation to Ammonia
journal, April 2019

  • Doyle, Laurence R.; Wooles, Ashley J.; Liddle, Stephen T.
  • Angewandte Chemie International Edition, Vol. 58, Issue 20
  • DOI: 10.1002/anie.201902195

Terminal uranium(V)-nitride hydrogenations involving direct addition or Frustrated Lewis Pair mechanisms
journal, January 2020


Materials for electrochemical ammonia synthesis
journal, January 2019

  • McPherson, Ian James; Sudmeier, Tim; Fellowes, Joshua
  • Dalton Transactions, Vol. 48, Issue 5
  • DOI: 10.1039/c8dt04019b

Activated basal planes of WS 2 by intrinsic defects as catalysts for the electrocatalytic nitrogen reduction reaction
journal, January 2019

  • Yao, Xue; Chen, Zhiwen; Wang, Yaru
  • Journal of Materials Chemistry A, Vol. 7, Issue 45
  • DOI: 10.1039/c9ta10050d

Dinitrogen Activation and Functionalization Using β-Diketiminate Iron Complexes: Dinitrogen Activation and Functionalization Using β-Diketiminate Iron Complexes
journal, April 2019

  • Bhutto, Samuel M.; Holland, Patrick L.
  • European Journal of Inorganic Chemistry, Vol. 2019, Issue 14
  • DOI: 10.1002/ejic.201900133

Rational Design of a Carbon‐Boron Frustrated Lewis Pair for Metal‐free Dinitrogen Activation
journal, March 2019


A sulfonate group functionalized active carbon-based Cu catalyst for electrochemical ammonia synthesis under ambient conditions
journal, January 2019

  • Zhang, Shengbo; Li, Wenyi; Liu, Yanyan
  • Inorganic Chemistry Frontiers, Vol. 6, Issue 10
  • DOI: 10.1039/c9qi00906j