skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Role of Surface States in Photocatalytic Oxygen Evolution with CuWO4 Particles

Abstract

CuWO4 is a medium bandgap (2.3 eV) n-type semiconductor capable of photoelectrochemical water oxidation under applied electrical bias. Here, we show for the first time that suspended microcrystals CuWO4 evolve oxygen photocatalytically under visible illumination from solutions of 0.05 M AgNO3 (10.8 μmol/hour; AQE of 0.56% at 400 nm) and 0.0002 M FeCl3 (1.5 μmol/hour). No oxygen is detected with 0.002 M [Fe(CN)6]3- as sacrificial agent. The activity dependence on the redox potential of the acceptors is due to the presence of Cu2+ based electron trap states in CuWO4. According to surface photovoltage spectroscopy and electrochemistry, these states are located on the particle surface, 1.8 eV above the valence band edge of the material. Controlling the chemistry of these states will be key to uses of CuWO4 particles in tandem catalysts for overall water splitting.

Authors:
; ; ; ; ; ; ; ; ORCiD logo
Publication Date:
Research Org.:
Univ. of California, Davis, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); Australian Research Council (ARC)
OSTI Identifier:
1481806
Alternate Identifier(s):
OSTI ID: 1612276
Grant/Contract Number:  
SC0015329; DP150102515
Resource Type:
Published Article
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Name: Journal of the Electrochemical Society Journal Volume: 166 Journal Issue: 5; Journal ID: ISSN 0013-4651
Publisher:
IOP Publishing - The Electrochemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE; Electrochemistry; Materials Science

Citation Formats

Wu, Zongkai, Zhao, Zeqiong, Cheung, Ghunbong, Doughty, Rachel M., Ballestas-Barrientos, Alfonso R., Hirmez, Benel, Han, Ruirui, Maschmeyer, Thomas, and Osterloh, Frank E. Role of Surface States in Photocatalytic Oxygen Evolution with CuWO4 Particles. United States: N. p., 2018. Web. doi:10.1149/2.0021905jes.
Wu, Zongkai, Zhao, Zeqiong, Cheung, Ghunbong, Doughty, Rachel M., Ballestas-Barrientos, Alfonso R., Hirmez, Benel, Han, Ruirui, Maschmeyer, Thomas, & Osterloh, Frank E. Role of Surface States in Photocatalytic Oxygen Evolution with CuWO4 Particles. United States. doi:10.1149/2.0021905jes.
Wu, Zongkai, Zhao, Zeqiong, Cheung, Ghunbong, Doughty, Rachel M., Ballestas-Barrientos, Alfonso R., Hirmez, Benel, Han, Ruirui, Maschmeyer, Thomas, and Osterloh, Frank E. Sat . "Role of Surface States in Photocatalytic Oxygen Evolution with CuWO4 Particles". United States. doi:10.1149/2.0021905jes.
@article{osti_1481806,
title = {Role of Surface States in Photocatalytic Oxygen Evolution with CuWO4 Particles},
author = {Wu, Zongkai and Zhao, Zeqiong and Cheung, Ghunbong and Doughty, Rachel M. and Ballestas-Barrientos, Alfonso R. and Hirmez, Benel and Han, Ruirui and Maschmeyer, Thomas and Osterloh, Frank E.},
abstractNote = {CuWO4 is a medium bandgap (2.3 eV) n-type semiconductor capable of photoelectrochemical water oxidation under applied electrical bias. Here, we show for the first time that suspended microcrystals CuWO4 evolve oxygen photocatalytically under visible illumination from solutions of 0.05 M AgNO3 (10.8 μmol/hour; AQE of 0.56% at 400 nm) and 0.0002 M FeCl3 (1.5 μmol/hour). No oxygen is detected with 0.002 M [Fe(CN)6]3- as sacrificial agent. The activity dependence on the redox potential of the acceptors is due to the presence of Cu2+ based electron trap states in CuWO4. According to surface photovoltage spectroscopy and electrochemistry, these states are located on the particle surface, 1.8 eV above the valence band edge of the material. Controlling the chemistry of these states will be key to uses of CuWO4 particles in tandem catalysts for overall water splitting.},
doi = {10.1149/2.0021905jes},
journal = {Journal of the Electrochemical Society},
number = 5,
volume = 166,
place = {United States},
year = {2018},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1149/2.0021905jes

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Unravelling Small-Polaron Transport in Metal Oxide Photoelectrodes
journal, January 2016

  • Rettie, Alexander J. E.; Chemelewski, William D.; Emin, David
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 3
  • DOI: 10.1021/acs.jpclett.5b02143

Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%
journal, March 2016

  • Wang, Qian; Hisatomi, Takashi; Jia, Qingxin
  • Nature Materials, Vol. 15, Issue 6
  • DOI: 10.1038/nmat4589

CVD-grown copper tungstate thin films for solar water splitting
journal, January 2018

  • Peeters, D.; Mendoza Reyes, O.; Mai, L.
  • Journal of Materials Chemistry A, Vol. 6, Issue 22
  • DOI: 10.1039/C7TA10759E

Photocatalytic water oxidation with iron oxide hydroxide (rust) nanoparticles
journal, August 2016

  • Shelton, Timothy L.; Bensema, Bronwyn L.; Brune, Nicholas K.
  • Journal of Photonics for Energy, Vol. 7, Issue 1
  • DOI: 10.1117/1.JPE.7.012003

Electrochemical deposition and photoelectrochemistry of CuWO4, a promising photoanode for water oxidation
journal, January 2011

  • Yourey, Joseph E.; Bartlett, Bart M.
  • Journal of Materials Chemistry, Vol. 21, Issue 21
  • DOI: 10.1039/c1jm11259g

Improved Photoelectrochemical Water Oxidation by the WO 3 /CuWO 4 Composite with a Manganese Phosphate Electrocatalyst
journal, September 2015


Z-scheme photocatalyst systems for water splitting under visible light irradiation
journal, January 2011


Copper Tungstate (CuWO 4 )–Based Materials for Photoelectrochemical Hydrogen Production
journal, January 2012

  • Gaillard, Nicolas; Chang, Yuancheng; Braun, Artur
  • MRS Proceedings, Vol. 1446
  • DOI: 10.1557/opl.2012.952

Solar Water Splitting Using Powdered Photocatalysts Driven by Z-Schematic Interparticle Electron Transfer without an Electron Mediator
journal, September 2009

  • Sasaki, Yasuyoshi; Nemoto, Hiroaki; Saito, Kenji
  • The Journal of Physical Chemistry C, Vol. 113, Issue 40
  • DOI: 10.1021/jp907128k

Synthesis, photoelectrochemical properties, and first principles study of n-type CuW1−xMoxO4 electrodes showing enhanced visible light absorption
journal, January 2013

  • Hill, James C.; Ping, Yuan; Galli, Giulia A.
  • Energy & Environmental Science, Vol. 6, Issue 8
  • DOI: 10.1039/c3ee40827b

Improved charge separation via Fe-doping of copper tungstate photoanodes
journal, January 2015

  • Bohra, Divya; Smith, Wilson A.
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 15
  • DOI: 10.1039/C4CP05565A

Water Oxidation on a CuWO 4 –WO 3 Composite Electrode in the Presence of [Fe(CN) 6 ] 3– : Toward Solar Z-Scheme Water Splitting at Zero Bias
journal, January 2012

  • Yourey, Joseph E.; Kurtz, Joshua B.; Bartlett, Bart M.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 4
  • DOI: 10.1021/jp211409x

Semiconductor Electrodes
journal, January 1979

  • Reichman, Benjamin
  • Journal of The Electrochemical Society, Vol. 126, Issue 12
  • DOI: 10.1149/1.2128873

Facile preparation of CuWO 4 porous films and their photoelectrochemical properties
journal, December 2017


Efficient and Stable Photo-Oxidation of Water by a Bismuth Vanadate Photoanode Coupled with an Iron Oxyhydroxide Oxygen Evolution Catalyst
journal, January 2012

  • Seabold, Jason A.; Choi, Kyoung-Shin
  • Journal of the American Chemical Society, Vol. 134, Issue 4, p. 2186-2192
  • DOI: 10.1021/ja209001d

Highly efficient Fe( iii ) reduction and solar-energy accumulation over a BiVO 4 photocatalyst
journal, January 2018

  • Miseki, Y.; Sayama, K.
  • Chemical Communications, Vol. 54, Issue 21
  • DOI: 10.1039/C8CC00257F

Atomic layer stack deposition-annealing synthesis of CuWO 4
journal, January 2016

  • Gao, Yuan; Zandi, Omid; Hamann, Thomas W.
  • Journal of Materials Chemistry A, Vol. 4, Issue 8
  • DOI: 10.1039/C5TA06899A

Particle suspension reactors and materials for solar-driven water splitting
journal, January 2015

  • Fabian, David M.; Hu, Shu; Singh, Nirala
  • Energy & Environmental Science, Vol. 8, Issue 10
  • DOI: 10.1039/C5EE01434D

CuWO 4 Nanoflake Array-Based Single-Junction and Heterojunction Photoanodes for Photoelectrochemical Water Oxidation
journal, April 2016

  • Ye, Wen; Chen, Fengjiao; Zhao, Feipeng
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 14
  • DOI: 10.1021/acsami.6b03176

Photocatalytic overall water splitting under visible light by TaON and WO3 with an IO3–/I– shuttle redox mediator
journal, January 2005

  • Abe, Ryu; Takata, Tsuyoshi; Sugihara, Hideki
  • Chemical Communications, Issue 30
  • DOI: 10.1039/b505646b

Enhancement of the photoelectrochemical performance of CuWO4 films for water splitting by hydrogen treatment
journal, January 2016


Efficient Nonsacrificial Water Splitting through Two-Step Photoexcitation by Visible Light using a Modified Oxynitride as a Hydrogen Evolution Photocatalyst
journal, April 2010

  • Maeda, Kazuhiko; Higashi, Masanobu; Lu, Daling
  • Journal of the American Chemical Society, Vol. 132, Issue 16
  • DOI: 10.1021/ja1009025

Single-Crystal Tungsten Oxide Nanosheets: Photochemical Water Oxidation in the Quantum Confinement Regime
journal, February 2012

  • Waller, Mollie R.; Townsend, Troy K.; Zhao, Jing
  • Chemistry of Materials, Vol. 24, Issue 4
  • DOI: 10.1021/cm203293j

Enhanced Visible-Light Photoactivity of CuWO 4 through a Surface-Deposited CuO
journal, May 2014

  • Chen, Haihang; Leng, Wenhua; Xu, Yiming
  • The Journal of Physical Chemistry C, Vol. 118, Issue 19
  • DOI: 10.1021/jp502616h

Copper-tungsten composite powders by the hydrogen reduction of copper tungstate
journal, December 1978

  • Basu, A. K.; Sale, F. R.
  • Journal of Materials Science, Vol. 13, Issue 12
  • DOI: 10.1007/BF02402759

Progress in bismuth vanadate photoanodes for use in solar water oxidation
journal, January 2013

  • Park, Yiseul; McDonald, Kenneth J.; Choi, Kyoung-Shin
  • Chem. Soc. Rev., Vol. 42, Issue 6, p. 2321-2337
  • DOI: 10.1039/C2CS35260E

Chemical Stability of CuWO 4 for Photoelectrochemical Water Oxidation
journal, April 2013

  • Yourey, Joseph E.; Pyper, Kayla J.; Kurtz, Joshua B.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 17
  • DOI: 10.1021/jp402048b

Significant Enhancement of the Photoelectrochemical Activity of CuWO 4 by using a Cobalt Phosphate Nanoscale Thin Film
journal, December 2017


Photo-oxidation of water sensitized by WO3 powder
journal, January 1982

  • Darwent, James R.; Mills, Andrew
  • Journal of the Chemical Society, Faraday Transactions 2, Vol. 78, Issue 2
  • DOI: 10.1039/f29827800359

Enhancement of the Photoelectrochemical Performance of CuWO 4 Thin Films for Solar Water Splitting by Plasmonic Nanoparticle Functionalization
journal, January 2015

  • Valenti, M.; Dolat, D.; Biskos, G.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 4
  • DOI: 10.1021/jp506349t

Optical absorption and Raman spectroscopy of CuWO 4
journal, March 2010


Reactivity of CuWO 4 in Photoelectrochemical Water Oxidation Is Dictated by a Midgap Electronic State
journal, November 2013

  • Pyper, Kayla J.; Yourey, Joseph E.; Bartlett, Bart M.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 47
  • DOI: 10.1021/jp408434v

Efficient Visible-Light-Driven Z-Scheme Overall Water Splitting Using a MgTa 2 O 6− x N y  /TaON Heterostructure Photocatalyst for H 2 Evolution
journal, June 2015

  • Chen, Shanshan; Qi, Yu; Hisatomi, Takashi
  • Angewandte Chemie International Edition, Vol. 54, Issue 29
  • DOI: 10.1002/anie.201502686

Photoelectrochemical Water Oxidation by Cobalt Catalyst (“Co−Pi”)/α-Fe 2 O 3 Composite Photoanodes: Oxygen Evolution and Resolution of a Kinetic Bottleneck
journal, March 2010

  • Zhong, Diane K.; Gamelin, Daniel R.
  • Journal of the American Chemical Society, Vol. 132, Issue 12
  • DOI: 10.1021/ja908730h

Nanostructured Tungsten Oxide - Properties, Synthesis, and Applications
journal, May 2011

  • Zheng, Haidong; Ou, Jian Zhen; Strano, Michael S.
  • Advanced Functional Materials, Vol. 21, Issue 12
  • DOI: 10.1002/adfm.201002477

Tungsten trioxide as a photoanode for a photoelectrochemical cell (PEC)
journal, March 1976

  • Hodes, Gary; Cahen, David; Manassen, Joost
  • Nature, Vol. 260, Issue 5549
  • DOI: 10.1038/260312a0

Photochemical Charge Separation at Particle Interfaces: The n-BiVO 4 –p-Silicon System
journal, March 2015

  • Yang, Yuxin; Wang, Jiarui; Zhao, Jing
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 10
  • DOI: 10.1021/acsami.5b00257

Z-Scheme Water Splitting Using Two Different Semiconductor Photocatalysts
journal, June 2013


Mott insulators: An early selection criterion for materials for photoelectrochemical H 2 production
journal, September 2011

  • Huda, Muhammad N.; Al-Jassim, Mowafak M.; Turner, John A.
  • Journal of Renewable and Sustainable Energy, Vol. 3, Issue 5
  • DOI: 10.1063/1.3637367

Effect of Thermal Treatment on the Crystallographic, Surface Energetics, and Photoelectrochemical Properties of Reactively Cosputtered Copper Tungstate for Water Splitting
journal, December 2011

  • Chang, Yuancheng; Braun, Artur; Deangelis, Alexander
  • The Journal of Physical Chemistry C, Vol. 115, Issue 51
  • DOI: 10.1021/jp207341v

Enhancing Majority Carrier Transport in WO 3 Water Oxidation Photoanode via Electrochemical Doping
journal, November 2014

  • Zhao, Jing; Olide, Everardo; Osterloh, Frank E.
  • Journal of The Electrochemical Society, Vol. 162, Issue 1
  • DOI: 10.1149/2.0871501jes

Advancing the Chemistry of CuWO 4 for Photoelectrochemical Water Oxidation
journal, May 2016


Enhanced Charge Separation and Collection in High-Performance Electrodeposited Hematite Films
journal, January 2016


Facile fabrication of bitter-gourd-shaped copper (II) tungstate thin films for improved photocatalytic water splitting
journal, June 2017


Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation
journal, December 2010