skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Understanding Rapid Adjustments to Diverse Forcing Agents

Abstract

Rapid adjustments are responses to forcing agents that cause a perturbation to the top of atmosphere energy budget but are uncoupled to changes in surface warming. Different mechanisms are responsible for these adjustments for a variety of climate drivers. These remain to be quantified in detail. It is shown that rapid adjustments reduce the effective radiative forcing (ERF) of black carbon by half of the instantaneous forcing, but for CO2 forcing, rapid adjustments increase ERF. Competing tropospheric adjustments for CO2 forcing are individually significant but sum to zero, such that the ERF equals the stratospherically adjusted radiative forcing, but this is not true for other forcing agents. Additional experiments of increase in the solar constant and increase in CH4 are used to show that a key factor of the rapid adjustment for an individual climate driver is changes in temperature in the upper troposphere and lower stratosphere.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [4]; ORCiD logo [5]; ORCiD logo [6];  [7]; ORCiD logo [3]; ORCiD logo [8]; ORCiD logo [9]; ORCiD logo [10]; ORCiD logo [11]; ORCiD logo [12];  [10]; ORCiD logo [1]; ORCiD logo [3]; ORCiD logo [13]; ORCiD logo [14] more »; ORCiD logo [15]; ORCiD logo [16]; ORCiD logo [14] « less
  1. School of Earth and EnvironmentUniversity of Leeds Leeds UK
  2. Rosenstiel School of Marine and Atmospheric ScienceUniversity of Miami Miami FL USA
  3. CICERO Center for International Climate and Environmental Research in Oslo Oslo Norway
  4. Met Office Hadley Centre Exeter UK
  5. Institut Pierre‐Simon Laplace, CNRS/Sorbonne Université Paris France
  6. NASA Goddard Institute for Space Studies New York NY USA, Center for Climate Systems ResearchColumbia University New York NY USA
  7. Max‐Planck‐Institut für Meteorologie Hamburg Germany
  8. Department of PhysicsImperial College London London UK, Grantham Institute – Climate Change and the EnvironmentImperial College London London UK
  9. Canadian Centre for Climate Modelling and Analysis Victoria British Columbia Canada
  10. Norwegian Meteorological Institute Oslo Norway
  11. NCAR/UCAR Boulder CO USA
  12. Institute of MeteorologyUniversität Leipzig Leipzig Germany
  13. Nicholas School of the EnvironmentDuke University Durham NC USA
  14. Atmospheric, Oceanic and Planetary Physics, Department of PhysicsUniversity of Oxford Oxford UK
  15. Kyushu University Fukuoka Japan
  16. Department of PhysicsImperial College London London UK
Publication Date:
Research Org.:
Univ. of Colorado, Boulder, CO (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER); Natural Environment Research Council (NERC); Research Council of Norway; GENCI (Grand Equipement National de Calcul Intensif); European Research Council (ERC); Alexander von Humboldt Foundation; National Institute for Environmental Studies; Environmental Restoration and Conservation Agency of Japan; Japan Society for the Promotion of Science (JSPS); National Aeronautic and Space Administration (NASA)
OSTI Identifier:
1481424
Alternate Identifier(s):
OSTI ID: 1481427; OSTI ID: 1611847
Grant/Contract Number:  
SC0012549; NE/N006038/1; 17-EARTH17R-015; NAPEX (229778); 724602; NE/K500872/1; JP15H01728
Resource Type:
Published Article
Journal Name:
Geophysical Research Letters
Additional Journal Information:
Journal Name: Geophysical Research Letters Journal Volume: 45 Journal Issue: 21; Journal ID: ISSN 0094-8276
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; geology; rapid adjustments; radiative forcing; PDRMIP; kernels

Citation Formats

Smith, C. J., Kramer, R. J., Myhre, G., Forster, P. M., Soden, B. J., Andrews, T., Boucher, O., Faluvegi, G., Fläschner, D., Hodnebrog, Ø., Kasoar, M., Kharin, V., Kirkevåg, A., Lamarque, J. ‐F., Mülmenstädt, J., Olivié, D., Richardson, T., Samset, B. H., Shindell, D., Stier, P., Takemura, T., Voulgarakis, A., and Watson‐Parris, D. Understanding Rapid Adjustments to Diverse Forcing Agents. United States: N. p., 2018. Web. doi:10.1029/2018GL079826.
Smith, C. J., Kramer, R. J., Myhre, G., Forster, P. M., Soden, B. J., Andrews, T., Boucher, O., Faluvegi, G., Fläschner, D., Hodnebrog, Ø., Kasoar, M., Kharin, V., Kirkevåg, A., Lamarque, J. ‐F., Mülmenstädt, J., Olivié, D., Richardson, T., Samset, B. H., Shindell, D., Stier, P., Takemura, T., Voulgarakis, A., & Watson‐Parris, D. Understanding Rapid Adjustments to Diverse Forcing Agents. United States. doi:10.1029/2018GL079826.
Smith, C. J., Kramer, R. J., Myhre, G., Forster, P. M., Soden, B. J., Andrews, T., Boucher, O., Faluvegi, G., Fläschner, D., Hodnebrog, Ø., Kasoar, M., Kharin, V., Kirkevåg, A., Lamarque, J. ‐F., Mülmenstädt, J., Olivié, D., Richardson, T., Samset, B. H., Shindell, D., Stier, P., Takemura, T., Voulgarakis, A., and Watson‐Parris, D. Fri . "Understanding Rapid Adjustments to Diverse Forcing Agents". United States. doi:10.1029/2018GL079826.
@article{osti_1481424,
title = {Understanding Rapid Adjustments to Diverse Forcing Agents},
author = {Smith, C. J. and Kramer, R. J. and Myhre, G. and Forster, P. M. and Soden, B. J. and Andrews, T. and Boucher, O. and Faluvegi, G. and Fläschner, D. and Hodnebrog, Ø. and Kasoar, M. and Kharin, V. and Kirkevåg, A. and Lamarque, J. ‐F. and Mülmenstädt, J. and Olivié, D. and Richardson, T. and Samset, B. H. and Shindell, D. and Stier, P. and Takemura, T. and Voulgarakis, A. and Watson‐Parris, D.},
abstractNote = {Rapid adjustments are responses to forcing agents that cause a perturbation to the top of atmosphere energy budget but are uncoupled to changes in surface warming. Different mechanisms are responsible for these adjustments for a variety of climate drivers. These remain to be quantified in detail. It is shown that rapid adjustments reduce the effective radiative forcing (ERF) of black carbon by half of the instantaneous forcing, but for CO2 forcing, rapid adjustments increase ERF. Competing tropospheric adjustments for CO2 forcing are individually significant but sum to zero, such that the ERF equals the stratospherically adjusted radiative forcing, but this is not true for other forcing agents. Additional experiments of increase in the solar constant and increase in CH4 are used to show that a key factor of the rapid adjustment for an individual climate driver is changes in temperature in the upper troposphere and lower stratosphere.},
doi = {10.1029/2018GL079826},
journal = {Geophysical Research Letters},
number = 21,
volume = 45,
place = {United States},
year = {2018},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1029/2018GL079826

Citation Metrics:
Cited by: 14 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

PDRMIP: A Precipitation Driver and Response Model Intercomparison Project—Protocol and Preliminary Results
journal, June 2017

  • Myhre, G.; Forster, P. M.; Samset, B. H.
  • Bulletin of the American Meteorological Society, Vol. 98, Issue 6
  • DOI: 10.1175/BAMS-D-16-0019.1

Radiative forcing and climate response
journal, March 1997

  • Hansen, J.; Sato, M.; Ruedy, R.
  • Journal of Geophysical Research: Atmospheres, Vol. 102, Issue D6
  • DOI: 10.1029/96JD03436

Carbon dioxide induced stomatal closure increases radiative forcing via a rapid reduction in low cloud: STOMATAL CLOSURE AND CO
journal, January 2009

  • Doutriaux-Boucher, M.; Webb, M. J.; Gregory, J. M.
  • Geophysical Research Letters, Vol. 36, Issue 2
  • DOI: 10.1029/2008GL036273

Greenhouse gases in the stratosphere
journal, February 1993

  • Zhong, Wenyi; Haigh, J. D.; Pyle, J. A.
  • Journal of Geophysical Research: Atmospheres, Vol. 98, Issue D2
  • DOI: 10.1029/92JD02024

Combining ERBE and ISCCP data to assess clouds in the Hadley Centre, ECMWF and LMD atmospheric climate models
journal, September 2001


An alternative to radiative forcing for estimating the relative importance of climate change mechanisms: ALTERNATIVE TO RADIATIVE FORCING
journal, October 2003

  • Shine, Keith P.; Cook, Jolene; Highwood, Eleanor J.
  • Geophysical Research Letters, Vol. 30, Issue 20
  • DOI: 10.1029/2003GL018141

Contributions of Different Cloud Types to Feedbacks and Rapid Adjustments in CMIP5
journal, July 2013


A new method for diagnosing radiative forcing and climate sensitivity
journal, January 2004


Forcing and feedback in the MPI-ESM-LR coupled model under abruptly quadrupled CO 2 : FORCING AND FEEDBACK IN THE MPI-ESM-LR
journal, October 2013

  • Block, K.; Mauritsen, T.
  • Journal of Advances in Modeling Earth Systems, Vol. 5, Issue 4
  • DOI: 10.1002/jame.20041

Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models: FORCING IN CMIP5 CLIMATE MODELS
journal, February 2013

  • Forster, Piers M.; Andrews, Timothy; Good, Peter
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 3
  • DOI: 10.1002/jgrd.50174

Aerosols, Climate, and the Hydrological Cycle
journal, December 2001


An Overview of CMIP5 and the Experiment Design
journal, April 2012

  • Taylor, Karl E.; Stouffer, Ronald J.; Meehl, Gerald A.
  • Bulletin of the American Meteorological Society, Vol. 93, Issue 4
  • DOI: 10.1175/BAMS-D-11-00094.1

Efficacy of climate forcings
journal, January 2005


Adjustments in the Forcing-Feedback Framework for Understanding Climate Change
journal, February 2015

  • Sherwood, Steven C.; Bony, Sandrine; Boucher, Olivier
  • Bulletin of the American Meteorological Society, Vol. 96, Issue 2
  • DOI: 10.1175/BAMS-D-13-00167.1

Aerosols, Cloud Microphysics, and Fractional Cloudiness
journal, September 1989


Validation and Sensitivities of Frontal Clouds Simulated by the ECMWF Model
journal, October 1999


On aspects of the concept of radiative forcing
journal, August 1997

  • Forster, P. M. F.; Freckleton, R. S.; Shine, K. P.
  • Climate Dynamics, Vol. 13, Issue 7-8
  • DOI: 10.1007/s003820050182

Surface and top-of-atmosphere radiative feedback kernels for CESM-CAM5
journal, January 2018

  • Pendergrass, Angeline G.; Conley, Andrew; Vitt, Francis M.
  • Earth System Science Data, Vol. 10, Issue 1
  • DOI: 10.5194/essd-10-317-2018

Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model
journal, April 1996

  • Edwards, J. M.; Slingo, A.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 122, Issue 531
  • DOI: 10.1002/qj.49712253107

Climate Feedbacks in CCSM3 under Changing CO 2 Forcing. Part I: Adapting the Linear Radiative Kernel Technique to Feedback Calculations for a Broad Range of Forcings
journal, August 2012

  • Jonko, Alexandra K.; Shell, Karen M.; Sanderson, Benjamin M.
  • Journal of Climate, Vol. 25, Issue 15
  • DOI: 10.1175/JCLI-D-11-00524.1

The ERA-Interim reanalysis: configuration and performance of the data assimilation system
journal, April 2011

  • Dee, D. P.; Uppala, S. M.; Simmons, A. J.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 137, Issue 656
  • DOI: 10.1002/qj.828

Why logarithmic? A note on the dependence of radiative forcing on gas concentration: HUANG AND BANI SHAHABADI
journal, December 2014

  • Huang, Yi; Bani Shahabadi, Maziar
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 24
  • DOI: 10.1002/2014JD022466

Radiative forcing by well-mixed greenhouse gases: Estimates from climate models in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4)
journal, January 2006

  • Collins, W. D.; Ramaswamy, V.; Schwarzkopf, M. D.
  • Journal of Geophysical Research, Vol. 111, Issue D14
  • DOI: 10.1029/2005JD006713

The HadGEM2 family of Met Office Unified Model climate configurations
journal, January 2011

  • Bellouin, N.; Collins, W. J.; Culverwell, I. D.
  • Geoscientific Model Development, Vol. 4, Issue 3
  • DOI: 10.5194/gmd-4-723-2011

The Influence of Pollution on the Shortwave Albedo of Clouds
journal, July 1977


Role of spatial and temporal variations in the computation of radiative forcing and GWP
journal, May 1997

  • Myhre, Gunnar; Stordal, Frode
  • Journal of Geophysical Research: Atmospheres, Vol. 102, Issue D10
  • DOI: 10.1029/97JD00148

Tropospheric Adjustment Induces a Cloud Component in CO 2 Forcing
journal, January 2008


CO 2 forcing induces semi-direct effects with consequences for climate feedback interpretations
journal, January 2008

  • Andrews, Timothy; Forster, Piers M.
  • Geophysical Research Letters, Vol. 35, Issue 4
  • DOI: 10.1029/2007GL032273

Black carbon semi-direct effects on cloud cover: review and synthesis
journal, January 2010


Rapid Adjustments Cause Weak Surface Temperature Response to Increased Black Carbon Concentrations: Rapid Adjustments Cause Weak BC Response
journal, November 2017

  • Stjern, Camilla Weum; Samset, Bjørn Hallvard; Myhre, Gunnar
  • Journal of Geophysical Research: Atmospheres, Vol. 122, Issue 21
  • DOI: 10.1002/2017JD027326

Estimating Shortwave Radiative Forcing and Response in Climate Models
journal, June 2007

  • Taylor, K. E.; Crucifix, M.; Braconnot, P.
  • Journal of Climate, Vol. 20, Issue 11
  • DOI: 10.1175/JCLI4143.1

Quantifying the Importance of Rapid Adjustments for Global Precipitation Changes
journal, October 2018

  • Myhre, G.; Kramer, R. J.; Smith, C. J.
  • Geophysical Research Letters, Vol. 45, Issue 20
  • DOI: 10.1029/2018GL079474

Fast and slow precipitation responses to individual climate forcers: A PDRMIP multimodel study
journal, March 2016

  • Samset, B. H.; Myhre, G.; Forster, P. M.
  • Geophysical Research Letters, Vol. 43, Issue 6
  • DOI: 10.1002/2016GL068064

Cloud Feedback Processes in a General Circulation Model
journal, April 1988


On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates
journal, March 2013


Improved Magnus Form Approximation of Saturation Vapor Pressure
journal, April 1996


Recommendations for diagnosing effective radiative forcing from climate models for CMIP6: RECOMMENDED EFFECTIVE RADIATIVE FORCING
journal, October 2016

  • Forster, Piers M.; Richardson, Thomas; Maycock, Amanda C.
  • Journal of Geophysical Research: Atmospheres, Vol. 121, Issue 20
  • DOI: 10.1002/2016JD025320

Quantifying Climate Feedbacks Using Radiative Kernels
journal, July 2008

  • Soden, Brian J.; Held, Isaac M.; Colman, Robert
  • Journal of Climate, Vol. 21, Issue 14
  • DOI: 10.1175/2007JCLI2110.1

Connections Between Clouds, Radiation, and Midlatitude Dynamics: a Review
journal, April 2015


Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part I: Cloud Radiative Kernels
journal, June 2012

  • Zelinka, Mark D.; Klein, Stephen A.; Hartmann, Dennis L.
  • Journal of Climate, Vol. 25, Issue 11
  • DOI: 10.1175/JCLI-D-11-00248.1

Tropical atmospheric circulation response to the G1 sunshade geoengineering radiative forcing experiment
journal, January 2018

  • Guo, Anboyu; Moore, John C.; Ji, Duoying
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 12
  • DOI: 10.5194/acp-18-8689-2018

Model-Specific Radiative Kernels for Calculating Cloud and Noncloud Climate Feedbacks
journal, November 2012


Climate feedbacks in a general circulation model incorporating prognostic clouds
journal, November 2001


Carbon Dioxide Physiological Forcing Dominates Projected Eastern Amazonian Drying
journal, March 2018

  • Richardson, T. B.; Forster, P. M.; Andrews, T.
  • Geophysical Research Letters, Vol. 45, Issue 6
  • DOI: 10.1002/2017GL076520

Using the Radiative Kernel Technique to Calculate Climate Feedbacks in NCAR’s Community Atmospheric Model
journal, May 2008

  • Shell, Karen M.; Kiehl, Jeffrey T.; Shields, Christine A.
  • Journal of Climate, Vol. 21, Issue 10
  • DOI: 10.1175/2007JCLI2044.1

Climate response to externally mixed black carbon as a function of altitude: BC climate response vs altitude
journal, April 2015

  • Samset, B. H.; Myhre, G.
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 7
  • DOI: 10.1002/2014JD022849

The Effects of Doubling the CO 2 Concentration on the climate of a General Circulation Model
journal, January 1975


Radiative Forcing of Quadrupling CO 2
journal, April 2014


COSP: Satellite simulation software for model assessment
journal, August 2011

  • Bodas-Salcedo, A.; Webb, M. J.; Bony, S.
  • Bulletin of the American Meteorological Society, Vol. 92, Issue 8
  • DOI: 10.1175/2011BAMS2856.1

The Cloud Feedback Model Intercomparison Project (CFMIP) contribution to CMIP6
journal, January 2017

  • Webb, Mark J.; Andrews, Timothy; Bodas-Salcedo, Alejandro
  • Geoscientific Model Development, Vol. 10, Issue 1
  • DOI: 10.5194/gmd-10-359-2017

An assessment of methods for computing radiative forcing in climate models
journal, July 2015


Quantifying components of aerosol-cloud-radiation interactions in climate models
journal, June 2014

  • Zelinka, Mark D.; Andrews, Timothy; Forster, Piers M.
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 12
  • DOI: 10.1002/2014JD021710