DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Oxygen Point Defect Chemistry in Ruddlesden–Popper Oxides (La1-xSrx)2MO4±δ (M = Co, Ni, Cu)

Abstract

Here, stability of oxygen point defects in Ruddlesden–Popper oxides (La1-xSrx)2MO4±δ (M = Co, Ni, Cu) is studied with density functional theory calculations to determine their stable sites, charge states, and energetics as functions of Sr content (x), transition metal (M), and defect concentration (δ). We demonstrate that the dominant O point defects can change between oxide interstitials, peroxide interstitials, and vacancies. In general, increasing x and atomic number of M stabilizes peroxide over oxide interstitials as well as vacancies over both peroxide and oxide interstitials; increasing δ destabilizes both oxide interstitials and vacancies but barely affects peroxide interstitials. We also demonstrate that the O 2p-band center is a powerful descriptor for these materials and correlates linearly with the formation energy of all defects. The trends of formation energy versus x, M, and δ and the correlation with O 2p-band center are explained in terms of oxidation chemistry and electronic structure.

Authors:
 [1];  [2];  [3];  [1]
  1. Univ. of Wisconsin-Madison, Madison, WI (United States)
  2. Univ. of Wisconsin-Madison, Madison, WI (United States); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  3. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Publication Date:
Research Org.:
National Energy Technology Lab. (NETL), Morgantown, WV (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1481165
Grant/Contract Number:  
ACI-1053575; 1148011; FE0009435
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry Letters
Additional Journal Information:
Journal Volume: 7; Journal Issue: 10; Journal ID: ISSN 1948-7185
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Xie, Wei, Lee, Yueh -Lin, Shao-Horn, Yang, and Morgan, Dane. Oxygen Point Defect Chemistry in Ruddlesden–Popper Oxides (La1-xSrx)2MO4±δ (M = Co, Ni, Cu). United States: N. p., 2016. Web. doi:10.1021/acs.jpclett.6b00739.
Xie, Wei, Lee, Yueh -Lin, Shao-Horn, Yang, & Morgan, Dane. Oxygen Point Defect Chemistry in Ruddlesden–Popper Oxides (La1-xSrx)2MO4±δ (M = Co, Ni, Cu). United States. https://doi.org/10.1021/acs.jpclett.6b00739
Xie, Wei, Lee, Yueh -Lin, Shao-Horn, Yang, and Morgan, Dane. Mon . "Oxygen Point Defect Chemistry in Ruddlesden–Popper Oxides (La1-xSrx)2MO4±δ (M = Co, Ni, Cu)". United States. https://doi.org/10.1021/acs.jpclett.6b00739. https://www.osti.gov/servlets/purl/1481165.
@article{osti_1481165,
title = {Oxygen Point Defect Chemistry in Ruddlesden–Popper Oxides (La1-xSrx)2MO4±δ (M = Co, Ni, Cu)},
author = {Xie, Wei and Lee, Yueh -Lin and Shao-Horn, Yang and Morgan, Dane},
abstractNote = {Here, stability of oxygen point defects in Ruddlesden–Popper oxides (La1-xSrx)2MO4±δ (M = Co, Ni, Cu) is studied with density functional theory calculations to determine their stable sites, charge states, and energetics as functions of Sr content (x), transition metal (M), and defect concentration (δ). We demonstrate that the dominant O point defects can change between oxide interstitials, peroxide interstitials, and vacancies. In general, increasing x and atomic number of M stabilizes peroxide over oxide interstitials as well as vacancies over both peroxide and oxide interstitials; increasing δ destabilizes both oxide interstitials and vacancies but barely affects peroxide interstitials. We also demonstrate that the O 2p-band center is a powerful descriptor for these materials and correlates linearly with the formation energy of all defects. The trends of formation energy versus x, M, and δ and the correlation with O 2p-band center are explained in terms of oxidation chemistry and electronic structure.},
doi = {10.1021/acs.jpclett.6b00739},
journal = {Journal of Physical Chemistry Letters},
number = 10,
volume = 7,
place = {United States},
year = {2016},
month = {5}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 41 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Materials for Solid Oxide Fuel Cells
journal, February 2010


Dense ceramic membranes for methane conversion
journal, July 2003


Oxygen diffusion and surface exchange in La2−xSrxNiO4+δ
journal, November 2000


Oxygen transport in the LaNiCoO system
journal, July 2005


Oxygen excess in layered lanthanide nickelates
journal, June 1988


Structure of the interstitial oxygen defect in La 2 NiO 4 + δ
journal, August 1989


Two-phase structural refinement of La2CuO4.032 at 15 K
journal, September 1990


Structure of the superconducting La 2 CuO 4 + δ phases (δ≊0.08,0.12) prepared by electrochemical oxidation
journal, July 1993

  • Radaelli, P. G.; Jorgensen, J. D.; Schultz, A. J.
  • Physical Review B, Vol. 48, Issue 1
  • DOI: 10.1103/PhysRevB.48.499

Additional Oxygen Ordering in "La2NiO4.25" (La8Ni4O17)
journal, October 1993

  • Demourgues, A.; Weill, F.; Darriet, B.
  • Journal of Solid State Chemistry, Vol. 106, Issue 2
  • DOI: 10.1006/jssc.1993.1292

Point Defects of La2CuO4-Based Ceramics, Part I: Oxygen Interstitials
journal, June 1996


Carrier-Controlled Doping Efficiency in La 2 CuO 4 + δ
journal, December 1996


Structure, mobility and clustering of interstitial O in La2CuO4+δ in the limit of small δ
journal, September 1998


Anisotropic oxygen diffusion in tetragonal La 2 NiO 4+δ : molecular dynamics calculations
journal, January 2010

  • Chroneos, Alexander; Parfitt, David; Kilner, John A.
  • J. Mater. Chem., Vol. 20, Issue 2
  • DOI: 10.1039/B917118E

Enhancement of Ionic Transport in Complex Oxides through Soft Lattice Modes and Epitaxial Strain
journal, March 2015


Electrical Conductivity and Oxygen Exchange Kinetics of La[sub 2]NiO[sub 4+δ] Thin Films Grown by Chemical Vapor Deposition
journal, January 2008

  • Garcia, Gemma; Burriel, Mónica; Bonanos, Nikolaos
  • Journal of The Electrochemical Society, Vol. 155, Issue 3
  • DOI: 10.1149/1.2829900

Ruddlesden-Popper Lnn+1NinO3n+1 nickelates: structure and properties
journal, April 1997


Neutron diffraction study on structural and magnetic properties of La 2 NiO 4
journal, May 1991

  • Rodriguez-Carvajal, J.; Fernandez-Diaz, M. T.; Martinez, J. L.
  • Journal of Physics: Condensed Matter, Vol. 3, Issue 19
  • DOI: 10.1088/0953-8984/3/19/002

Oxygen nonstoichiometry and ionic transport in La2Ni(Fe)O4 + δ
journal, March 2008


Surface-limited oxygen transport and electrode properties of La2Ni0.8Cu0.2O4+δ
journal, January 2004

  • Kharton, V. V.; Tsipis, E. V.; Yaremchenko, A. A.
  • Solid State Ionics, Vol. 166, Issue 3-4, p. 327-337
  • DOI: 10.1016/j.ssi.2003.11.020

Stability and oxygen transport properties of Pr2NiO4+δ ceramics
journal, January 2007

  • Kovalevsky, A. V.; Kharton, V. V.; Yaremchenko, A. A.
  • Journal of the European Ceramic Society, Vol. 27, Issue 13-15, p. 4269-4272
  • DOI: 10.1016/j.jeurceramsoc.2007.02.136

The determining factor for interstitial oxygen formation in Ruddlesden–Popper type La 2 NiO 4 -based oxides
journal, January 2016

  • Nakamura, Takashi; Oike, Ryo; Ling, Yihan
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 3
  • DOI: 10.1039/C5CP05993C

Kinetics of Oxygen Surface Exchange on Epitaxial Ruddlesden–Popper Phases and Correlations to First-Principles Descriptors
journal, January 2016

  • Lee, Yueh-Lin; Lee, Dongkyu; Wang, Xiao Renshaw
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 2
  • DOI: 10.1021/acs.jpclett.5b02423

Prediction of solid oxide fuel cell cathode activity with first-principles descriptors
journal, January 2011

  • Lee, Yueh-Lin; Kleis, Jesper; Rossmeisl, Jan
  • Energy & Environmental Science, Vol. 4, Issue 10
  • DOI: 10.1039/c1ee02032c

Energetics of La2-xSrxCoO4-y (0.5 < x < 1.5)
journal, September 1994

  • Prasanna, T. R. S.; Navrotsky, A.
  • Journal of Solid State Chemistry, Vol. 112, Issue 1
  • DOI: 10.1006/jssc.1994.1286

The Energetics of La2-xAxNiO4-y (A = Ba, Sr)
journal, March 1993

  • DiCarlo, Joseph; Mehta, Apurva; Banschick, David
  • Journal of Solid State Chemistry, Vol. 103, Issue 1
  • DOI: 10.1006/jssc.1993.1091

Energetics of La2−xSrxCuO4−y solid solutions (0.0 ≤ x ≤ 1.0)
journal, August 1991

  • Bularzik, Joseph; Navrotsky, Alexandra; DiCarlo, Joseph
  • Journal of Solid State Chemistry, Vol. 93, Issue 2
  • DOI: 10.1016/0022-4596(91)90315-9

Valence control, reactivity of oxygen, and catalytic activity of lanthanum strontium cobalt oxide (La2-xSrxCoO4)
journal, March 1989

  • Nitadori, Taihei; Muramatsu, Motohiko; Misono, Makoto
  • Chemistry of Materials, Vol. 1, Issue 2
  • DOI: 10.1021/cm00002a010

Crystal chemistry and physical properties of La2−xSrxNiO4 (0 ≤ x ≤ 1.6)
journal, March 1990


Defect Chemistry of La2−xSrxCuO4−δ: Oxygen Nonstoichiometry and Thermodynamic Stability
journal, June 1997

  • Kanai, Hideki; Mizusaki, Junichiro; Tagawa, Hiroaki
  • Journal of Solid State Chemistry, Vol. 131, Issue 1
  • DOI: 10.1006/jssc.1997.7377

Thermogravimetric Analysis and Defect Models of the Oxygen Nonstoichiometry in La2-xSrxCuO4-y
journal, October 1994


Oxygen transport pathways in Ruddlesden–Popper structured oxides revealed via in situ neutron diffraction
journal, January 2015

  • Tomkiewicz, Alex C.; Tamimi, Mazin; Huq, Ashfia
  • Journal of Materials Chemistry A, Vol. 3, Issue 43
  • DOI: 10.1039/C5TA04193G

Oxygen nonstoichiometry and defect equilibrium in La2−xSrxNiO4+δ
journal, April 2009


Anionic redox processes for electrochemical devices
journal, January 2016

  • Grimaud, A.; Hong, W. T.; Shao-Horn, Y.
  • Nature Materials, Vol. 15, Issue 2
  • DOI: 10.1038/nmat4551

Works referencing / citing this record:

An Artificial Optoelectronic Synapse Based on a Photoelectric Memcapacitor
journal, December 2019

  • Zhao, Lei; Fan, Zhen; Cheng, Shengliang
  • Advanced Electronic Materials, Vol. 6, Issue 2
  • DOI: 10.1002/aelm.201900858

Electrochemically Induced Phase Changes in La 2 CuO 4 During Cathodic Electrocatalysis
journal, August 2019

  • Whittingham, Alexander W. H.; Smith, Rodney D. L.
  • ChemElectroChem, Vol. 6, Issue 19
  • DOI: 10.1002/celc.201901412

Intrinsic Effects of Ruddlesden‐Popper‐Based Bifunctional Catalysts for High‐Temperature Oxygen Reduction and Evolution
journal, June 2019


Material Discovery and Design Principles for Stable, High Activity Perovskite Cathodes for Solid Oxide Fuel Cells
journal, January 2018

  • Jacobs, Ryan; Mayeshiba, Tam; Booske, John
  • Advanced Energy Materials, Vol. 8, Issue 11
  • DOI: 10.1002/aenm.201702708

Controlling Oxygen Mobility in Ruddlesden–Popper Oxides
journal, March 2017


Strain control of oxygen kinetics in the Ruddlesden-Popper oxide La1.85Sr0.15CuO4
journal, January 2018


Controlling the Oxygen Electrocatalysis on Perovskite and Layered Oxide Thin Films for Solid Oxide Fuel Cell Cathodes
journal, March 2019

  • Yang, Gene; Jung, Wonsang; Ahn, Sung-Jin
  • Applied Sciences, Vol. 9, Issue 5
  • DOI: 10.3390/app9051030