skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Giant negative thermal expansion in Fe-Mn-Ga magnetic shape memory alloys

Abstract

Fe-Mn-Ga magnetic shape memory alloys can undergo martensitic transformation (MT) from a paramagnetic cubic phase to a ferromagnetic tetragonal phase. The MT is accompanied by a large volume change; yet, these alloys have never been explored for technological applications as negative thermal expansion (NTE) materials. Here, by careful chemical modification, tunable NTE characteristics including wide operating temperature windows (Delta T) and large negative linear coefficients of thermal expansion (alpha(l)) have been achieved in Fe 44-xMn 28Ga 28+x (x = 1, 2, and 2.5) alloys. Typically, a giant NTE Delta T of 81 K and alpha(l =) -50.2 x 10(-6) K-1 were realized in the Fe43Mn28Ga29 alloy upon cooling from 290 K. The relationships between the NTE features, the MT, and the substitution of Ga for Fe were discussed. Furthermore, the Fe-Mn-Ga alloys possess excellent mechanical properties, high electrical conductivity and high thermal conductivity. With these advantages, the Fe-Mn-Ga magnetic shape memory alloys show promising prospects for use as advanced NTE materials.

Authors:
 [1];  [1];  [2];  [3]; ORCiD logo [1];  [1]; ORCiD logo [1];  [1];  [4];  [4];  [1]
  1. Univ. of Science and Technology Beijing, Beijing (China). State Key Lab. for Advanced Metals and Materials
  2. Argonne National Lab. (ANL), Argonne, IL (United States). X-Ray Sciences Division
  3. Northern Illinois Univ., DeKalb, IL (United States). Dept. of Physics
  4. Beijing Inst. of Technology, Beijing (China). School of Materials Science and Engineering
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); National Natural Science Foundation of China (NNSFC); Chinese Academy of Sciences (CAS)
OSTI Identifier:
1480852
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 113; Journal Issue: 4; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Sun, X. M., Cong, D. Y., Ren, Y., Brown, D. E., Li, R. G., Li, S. H., Yang, Z., Xiong, W. X., Nie, Z. H., Wang, L., and Wang, Y. D. Giant negative thermal expansion in Fe-Mn-Ga magnetic shape memory alloys. United States: N. p., 2018. Web. doi:10.1063/1.5038860.
Sun, X. M., Cong, D. Y., Ren, Y., Brown, D. E., Li, R. G., Li, S. H., Yang, Z., Xiong, W. X., Nie, Z. H., Wang, L., & Wang, Y. D. Giant negative thermal expansion in Fe-Mn-Ga magnetic shape memory alloys. United States. doi:10.1063/1.5038860.
Sun, X. M., Cong, D. Y., Ren, Y., Brown, D. E., Li, R. G., Li, S. H., Yang, Z., Xiong, W. X., Nie, Z. H., Wang, L., and Wang, Y. D. Mon . "Giant negative thermal expansion in Fe-Mn-Ga magnetic shape memory alloys". United States. doi:10.1063/1.5038860. https://www.osti.gov/servlets/purl/1480852.
@article{osti_1480852,
title = {Giant negative thermal expansion in Fe-Mn-Ga magnetic shape memory alloys},
author = {Sun, X. M. and Cong, D. Y. and Ren, Y. and Brown, D. E. and Li, R. G. and Li, S. H. and Yang, Z. and Xiong, W. X. and Nie, Z. H. and Wang, L. and Wang, Y. D.},
abstractNote = {Fe-Mn-Ga magnetic shape memory alloys can undergo martensitic transformation (MT) from a paramagnetic cubic phase to a ferromagnetic tetragonal phase. The MT is accompanied by a large volume change; yet, these alloys have never been explored for technological applications as negative thermal expansion (NTE) materials. Here, by careful chemical modification, tunable NTE characteristics including wide operating temperature windows (Delta T) and large negative linear coefficients of thermal expansion (alpha(l)) have been achieved in Fe44-xMn28Ga28+x (x = 1, 2, and 2.5) alloys. Typically, a giant NTE Delta T of 81 K and alpha(l =) -50.2 x 10(-6) K-1 were realized in the Fe43Mn28Ga29 alloy upon cooling from 290 K. The relationships between the NTE features, the MT, and the substitution of Ga for Fe were discussed. Furthermore, the Fe-Mn-Ga alloys possess excellent mechanical properties, high electrical conductivity and high thermal conductivity. With these advantages, the Fe-Mn-Ga magnetic shape memory alloys show promising prospects for use as advanced NTE materials.},
doi = {10.1063/1.5038860},
journal = {Applied Physics Letters},
number = 4,
volume = 113,
place = {United States},
year = {2018},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 3 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides
journal, December 2005

  • Takenaka, K.; Takagi, H.
  • Applied Physics Letters, Vol. 87, Issue 26
  • DOI: 10.1063/1.2147726

Neutron Diffraction Study of Unusual Phase Separation in the Antiperovskite Nitride Mn 3 ZnN
journal, June 2012

  • Sun, Ying; Wang, Cong; Huang, Qingzhen
  • Inorganic Chemistry, Vol. 51, Issue 13
  • DOI: 10.1021/ic300978x

Electronic structure, magnetic and optical properties of Heusler alloy
journal, July 2012


Linear Thermal Expansion of Three Tungstates
journal, April 1968


Magnetotransport properties of Fe 48 Mn 24 Ga 28 Heusler alloys
journal, May 2013


Mechanical Properties of Metallic Perovskite Mn 3 Cu 0.5 Ge 0.5 N:High-Stiffness Isotropic Negative Thermal Expansion Material
journal, December 2009


Nanoporosity and Exceptional Negative Thermal Expansion in Single-Network Cadmium Cyanide
journal, February 2008

  • Phillips, Anthony E.; Goodwin, Andrew L.; Halder, Gregory J.
  • Angewandte Chemie International Edition, Vol. 47, Issue 8
  • DOI: 10.1002/anie.200704421

Giant Negative Thermal Expansion in Bonded MnCoGe-Based Compounds with Ni 2 In-Type Hexagonal Structure
journal, January 2015

  • Zhao, Ying-Ying; Hu, Feng-Xia; Bao, Li-Fu
  • Journal of the American Chemical Society, Vol. 137, Issue 5
  • DOI: 10.1021/ja510693a

Local Lattice Distortion in the Giant Negative Thermal Expansion Material Mn 3 Cu 1 x Ge x N
journal, November 2008


Thermal expansion anomaly and Invar effect of Mn1−xCoxB
journal, February 1992


Wasp waisted-like hysteresis loops observed in the γ-Fe2MnGa compound
journal, April 2017


Ultra-precise thermal expansion measurements of ceramic and steel gauge blocks with an interferometric dilatometer
journal, April 2000


Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2O8
journal, April 1996


Colossal negative thermal expansion with an extended temperature interval covering room temperature in fine-powdered Mn 0.98 CoGe
journal, December 2016

  • Lin, Jianchao; Tong, Peng; Zhang, Kui
  • Applied Physics Letters, Vol. 109, Issue 24
  • DOI: 10.1063/1.4972234

Structural Relationship between Negative Thermal Expansion and Quartic Anharmonicity of Cubic ScF 3
journal, November 2011


Negative thermal expansion in Ge-free antiperovskite manganese nitrides: Tin-doping effect
journal, January 2008

  • Takenaka, K.; Asano, K.; Misawa, M.
  • Applied Physics Letters, Vol. 92, Issue 1
  • DOI: 10.1063/1.2831715

Pronounced Negative Thermal Expansion from a Simple Structure: Cubic ScF 3
journal, November 2010

  • Greve, Benjamin K.; Martin, Kenneth L.; Lee, Peter L.
  • Journal of the American Chemical Society, Vol. 132, Issue 44
  • DOI: 10.1021/ja106711v

Unusual thermal conductivity of the negative thermal expansion material, ZrW2O8
journal, April 2005


Adjustable Zero Thermal Expansion in Antiperovskite Manganese Nitride
journal, September 2011

  • Song, Xiaoyan; Sun, Zhonghua; Huang, Qingzhen
  • Advanced Materials, Vol. 23, Issue 40
  • DOI: 10.1002/adma.201102552

Colossal negative thermal expansion in reduced layered ruthenate
journal, January 2017

  • Takenaka, Koshi; Okamoto, Yoshihiko; Shinoda, Tsubasa
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14102

Zero Thermal Expansion in PbTiO 3 -Based Perovskites
journal, January 2008

  • Chen, Jun; Xing, Xianran; Sun, Ce
  • Journal of the American Chemical Society, Vol. 130, Issue 4
  • DOI: 10.1021/ja7100278

Connection of giant volume magnetostriction and colossal magnetoresistance in La0.8Ba0.2MnO3
journal, May 2004


Negative thermal expansion materials: technological key for control of thermal expansion
journal, February 2012


Suppression of martensitic transformation in Fe 50 Mn 23 Ga 27 by local symmetry breaking
journal, May 2015

  • Ma, Tianyu; Liu, Xiaolian; Yan, Mi
  • Applied Physics Letters, Vol. 106, Issue 21
  • DOI: 10.1063/1.4921928

Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications
journal, January 2015

  • Chen, Jun; Hu, Lei; Deng, Jinxia
  • Chemical Society Reviews, Vol. 44, Issue 11
  • DOI: 10.1039/C4CS00461B

Critical magnetic behavior of ferromagnetic CdCr 2 S 4
journal, October 2013


Magnetically driven negative thermal expansion in antiperovskite Ga 1- x Mn x N 0.8 Mn 3 (0.1 ≤  x  ≤ 0.3)
journal, November 2015

  • Guo, X. G.; Lin, J. C.; Tong, P.
  • Applied Physics Letters, Vol. 107, Issue 20
  • DOI: 10.1063/1.4936239

Negative thermal expansion of ReO 3 : Neutron diffraction experiments and dynamical lattice calculations
journal, October 2008


Giant Negative Thermal Expansion in NaZn 13 -Type La(Fe, Si, Co) 13 Compounds
journal, July 2013

  • Huang, Rongjin; Liu, Yanying; Fan, Wei
  • Journal of the American Chemical Society, Vol. 135, Issue 31
  • DOI: 10.1021/ja405161z

Negative thermal expansion and magnetocaloric effect in Mn-Co-Ge-In thin films
journal, January 2018

  • Liu, Y.; Qiao, K. M.; Zuo, S. L.
  • Applied Physics Letters, Vol. 112, Issue 1
  • DOI: 10.1063/1.5009985

Magnetocrystalline anisotropy in Fe–Mn–Ga magnetic shape memory alloy
journal, April 2011


Martensitic transformation and magnetic field-induced strain in Fe–Mn–Ga shape memory alloy
journal, August 2009

  • Omori, T.; Watanabe, K.; Umetsu, R. Y.
  • Applied Physics Letters, Vol. 95, Issue 8
  • DOI: 10.1063/1.3213353

Magnetic-field-induced transformation in FeMnGa alloys
journal, November 2009

  • Zhu, W.; Liu, E. K.; Feng, L.
  • Applied Physics Letters, Vol. 95, Issue 22
  • DOI: 10.1063/1.3269590

Colossal negative thermal expansion in BiNiO3 induced by intermetallic charge transfer
journal, June 2011

  • Azuma, Masaki; Chen, Wei-tin; Seki, Hayato
  • Nature Communications, Vol. 2, Issue 1
  • DOI: 10.1038/ncomms1361

Size effects on negative thermal expansion in cubic ScF 3
journal, July 2016

  • Yang, C.; Tong, P.; Lin, J. C.
  • Applied Physics Letters, Vol. 109, Issue 2
  • DOI: 10.1063/1.4959083

Magnetic-field-induced shape recovery by reverse phase transformation
journal, February 2006


Magnetic field-induced martensitic transformation and large magnetoresistance in NiCoMnSb alloys
journal, June 2007

  • Yu, S. Y.; Ma, L.; Liu, G. D.
  • Applied Physics Letters, Vol. 90, Issue 24
  • DOI: 10.1063/1.2748095

Large Magnetostriction and Negative Thermal Expansion in the Frustrated Antiferromagnet ZnCr 2 Se 4
journal, April 2007


    Works referencing / citing this record: