skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Gaussian process based optimization of molecular geometries using statistically sampled energy surfaces from quantum Monte Carlo

Abstract

Optimization of atomic coordinates and lattice parameters remains a significant challenge to the wide use of stochastic electronic structure methods such as quantum Monte Carlo (QMC). Measurements of the forces and stress tensor by these methods contain statistical errors, challenging conventional gradient-based numerical optimization methods that assume deterministic results. Additionally, forces are not yet available for some methods, wavefunctions, and basis sets and when available may be expensive to compute to sufficiently high statistical accuracy near energy minima, where the energy surfaces are flat. Here, we explore the use of Gaussian process based techniques to sample the energy surfaces and reduce sensitivity to the statistical nature of the problem. We utilize Latin hypercube sampling, with the number of sampled energy points scaling quadratically with the number of optimized parameters. Furthermore, we show these techniques may be successfully applied to systems consisting of tens of parameters, demonstrating QMC optimization of a benzene molecule starting from a randomly perturbed, broken symmetry geometry.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1480630
Alternate Identifier(s):
OSTI ID: 1480165
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 149; Journal Issue: 16; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS

Citation Formats

Archibald, Richard K., Krogel, Jaron T., and Kent, Paul R. C. Gaussian process based optimization of molecular geometries using statistically sampled energy surfaces from quantum Monte Carlo. United States: N. p., 2018. Web. doi:10.1063/1.5040584.
Archibald, Richard K., Krogel, Jaron T., & Kent, Paul R. C. Gaussian process based optimization of molecular geometries using statistically sampled energy surfaces from quantum Monte Carlo. United States. doi:10.1063/1.5040584.
Archibald, Richard K., Krogel, Jaron T., and Kent, Paul R. C. Sun . "Gaussian process based optimization of molecular geometries using statistically sampled energy surfaces from quantum Monte Carlo". United States. doi:10.1063/1.5040584. https://www.osti.gov/servlets/purl/1480630.
@article{osti_1480630,
title = {Gaussian process based optimization of molecular geometries using statistically sampled energy surfaces from quantum Monte Carlo},
author = {Archibald, Richard K. and Krogel, Jaron T. and Kent, Paul R. C.},
abstractNote = {Optimization of atomic coordinates and lattice parameters remains a significant challenge to the wide use of stochastic electronic structure methods such as quantum Monte Carlo (QMC). Measurements of the forces and stress tensor by these methods contain statistical errors, challenging conventional gradient-based numerical optimization methods that assume deterministic results. Additionally, forces are not yet available for some methods, wavefunctions, and basis sets and when available may be expensive to compute to sufficiently high statistical accuracy near energy minima, where the energy surfaces are flat. Here, we explore the use of Gaussian process based techniques to sample the energy surfaces and reduce sensitivity to the statistical nature of the problem. We utilize Latin hypercube sampling, with the number of sampled energy points scaling quadratically with the number of optimized parameters. Furthermore, we show these techniques may be successfully applied to systems consisting of tens of parameters, demonstrating QMC optimization of a benzene molecule starting from a randomly perturbed, broken symmetry geometry.},
doi = {10.1063/1.5040584},
journal = {Journal of Chemical Physics},
number = 16,
volume = 149,
place = {United States},
year = {2018},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Figures / Tables:

FIG. 1 FIG. 1: Depiction of the proposed optimization process, beginning with the initial domain, QMC evaluation of LHC samples, GP approximation as given in Eq. 4, and finally estimation of minimum and new search domain, such that $Ω$i+1 $\subset$ $Ω$i. The process is halted when the predicted minimum energies and configurationmore » parameters are sufficiently converged.« less

Save / Share:

Works referenced in this record:

Solvent Effects on Excited-State Structures: A Quantum Monte Carlo and Density Functional Study
journal, November 2014

  • Guareschi, Riccardo; Floris, Franca Maria; Amovilli, Claudio
  • Journal of Chemical Theory and Computation, Vol. 10, Issue 12
  • DOI: 10.1021/ct500723s

Communication: Calculation of interatomic forces and optimization of molecular geometry with auxiliary-field quantum Monte Carlo
journal, May 2018

  • Motta, Mario; Zhang, Shiwei
  • The Journal of Chemical Physics, Vol. 148, Issue 18
  • DOI: 10.1063/1.5029508

Monte-Carlo solution of Schrödinger's equation
journal, February 1971


Fermion Monte Carlo without fixed nodes: A game of life, death, and annihilation in Slater determinant space
journal, January 2009

  • Booth, George H.; Thom, Alex J. W.; Alavi, Ali
  • The Journal of Chemical Physics, Vol. 131, Issue 5
  • DOI: 10.1063/1.3193710

Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo
journal, April 2015

  • Zen, Andrea; Luo, Ye; Mazzola, Guglielmo
  • The Journal of Chemical Physics, Vol. 142, Issue 14
  • DOI: 10.1063/1.4917171

Construction of reactive potential energy surfaces with Gaussian process regression: active data selection
journal, November 2017


Sequential Exploration of Complex Surfaces Using Minimum Energy Designs
journal, January 2015


Stochastic Coupled Cluster Theory
journal, December 2010


Bayesian Treed Gaussian Process Models With an Application to Computer Modeling
journal, September 2008

  • Gramacy, Robert B.; Lee, Herbert K. H.
  • Journal of the American Statistical Association, Vol. 103, Issue 483
  • DOI: 10.1198/016214508000000689

General atomic and molecular electronic structure system
journal, November 1993

  • Schmidt, Michael W.; Baldridge, Kim K.; Boatz, Jerry A.
  • Journal of Computational Chemistry, Vol. 14, Issue 11, p. 1347-1363
  • DOI: 10.1002/jcc.540141112

Bayesian calibration of computer models
journal, August 2001

  • Kennedy, Marc C.; O'Hagan, Anthony
  • Journal of the Royal Statistical Society: Series B (Statistical Methodology), Vol. 63, Issue 3
  • DOI: 10.1111/1467-9868.00294

Machine learning unifies the modeling of materials and molecules
journal, December 2017

  • Bartók, Albert P.; De, Sandip; Poelking, Carl
  • Science Advances, Vol. 3, Issue 12
  • DOI: 10.1126/sciadv.1701816

A Blocked Linear Method for Optimizing Large Parameter Sets in Variational Monte Carlo
journal, May 2017

  • Zhao, Luning; Neuscamman, Eric
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 6
  • DOI: 10.1021/acs.jctc.7b00119

Correlated sampling in quantum Monte Carlo: A route to forces
journal, June 2000


Electronic quantum Monte Carlo calculations of atomic forces, vibrations, and anharmonicities
journal, June 2005

  • Lee, Myung Won; Mella, Massimo; Rappe, Andrew M.
  • The Journal of Chemical Physics, Vol. 122, Issue 24
  • DOI: 10.1063/1.1924690

A reactive potential for hydrocarbons with intermolecular interactions
journal, April 2000

  • Stuart, Steven J.; Tutein, Alan B.; Harrison, Judith A.
  • The Journal of Chemical Physics, Vol. 112, Issue 14
  • DOI: 10.1063/1.481208

Generalized Latin Hypercube Design for Computer Experiments
journal, November 2010


Energy-consistent pseudopotentials for quantum Monte Carlo calculations
journal, June 2007

  • Burkatzki, M.; Filippi, C.; Dolg, M.
  • The Journal of Chemical Physics, Vol. 126, Issue 23
  • DOI: 10.1063/1.2741534

Theory of reproducing kernels
journal, March 1950


Practical Schemes for Accurate Forces in Quantum Monte Carlo
journal, October 2014

  • Moroni, S.; Saccani, S.; Filippi, C.
  • Journal of Chemical Theory and Computation, Vol. 10, Issue 11
  • DOI: 10.1021/ct500780r

Computing forces with quantum Monte Carlo
journal, September 2000

  • Assaraf, Roland; Caffarel, Michel
  • The Journal of Chemical Physics, Vol. 113, Issue 10
  • DOI: 10.1063/1.1286598

Theoretical S 1 ← S 0 Absorption Energies of the Anionic Forms of Oxyluciferin by Variational Monte Carlo and Many-Body Green’s Function Theory
journal, August 2017

  • Coccia, Emanuele; Varsano, Daniele; Guidoni, Leonardo
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 9
  • DOI: 10.1021/acs.jctc.7b00505

Optimizing the Energy with Quantum Monte Carlo: A Lower Numerical Scaling for Jastrow–Slater Expansions
journal, October 2017

  • Assaraf, Roland; Moroni, S.; Filippi, Claudia
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 11
  • DOI: 10.1021/acs.jctc.7b00648

Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields
journal, November 1994

  • Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.
  • The Journal of Physical Chemistry, Vol. 98, Issue 45, p. 11623-11627
  • DOI: 10.1021/j100096a001

Ground State of Liquid He 4
journal, April 1965


Accurate emulators for large-scale computer experiments
journal, December 2011

  • Haaland, Ben; Qian, Peter Z. G.
  • The Annals of Statistics, Vol. 39, Issue 6
  • DOI: 10.1214/11-aos929

Analytic nuclear forces and molecular properties from full configuration interaction quantum Monte Carlo
journal, August 2015

  • Thomas, Robert E.; Opalka, Daniel; Overy, Catherine
  • The Journal of Chemical Physics, Vol. 143, Issue 5
  • DOI: 10.1063/1.4927594

Nexus: A modular workflow management system for quantum simulation codes
journal, January 2016


Quantum Monte Carlo Calculations for Minimum Energy Structures
journal, May 2010


Geometries of low spin states of multi-centre transition metal complexes through extended broken symmetry variational Monte Carlo
journal, September 2016

  • Barborini, Matteo; Guidoni, Leonardo
  • The Journal of Chemical Physics, Vol. 145, Issue 12
  • DOI: 10.1063/1.4963015

Computing accurate forces in quantum Monte Carlo using Pulay’s corrections and energy minimization
journal, January 2003

  • Casalegno, Mosé; Mella, Massimo; Rappe, Andrew M.
  • The Journal of Chemical Physics, Vol. 118, Issue 16
  • DOI: 10.1063/1.1562605

Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code
journal, May 1979


    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.