DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Molecular Dynamics Modeling of the Structure and Na+-Ion Transport in Na2S + SiS2 Glassy Electrolytes

Abstract

Solid-state sodium batteries, a relatively safe and potentially cost-effective energy-storage technology, have attracted increasing scientific attention recently for application in stationary grid-scale energy storage. Identifying solid electrolytes with high electrochemical stability and high Na+-ion conductivity at room temperature is critically important to enable high energy densities with enhanced rate capabilities. We evaluated sodium sulfide silicon sulfide, xNa2S + (1 - x)SiS2, glasses as potential glassy solid electrolytes (GSEs) using molecular dynamics (MD) simulations. We employed ab initio MD to determine ion conduction mechanisms, to calculate energy barriers for ion hops, and to correlate these to the local short-range structure of 0.50Na2S + 0.50SiS2 glass. To simulate much larger systems for accurately calculating the ionic conductivity, we parameterized empirical Buckingham-type potential and performed classical MD simulations. After validating these calculations by comparing the structure obtained from MD to that from X-ray scattering data, we calculated the ionic conductivity of these glasses for the range of 0.33 ≤ x ≤ 0.67 compositions. The calculated ionic conductivities at room temperature were in the range of similar to 10-5 S/cm for the x = 0.50 composition and increased significantly with sodium sulfide (x) content. Furthermore, these calculations provide theoretical insights into the role ofmore » Na2S content on the ionic conductivity of GSEs aiding in the selection of specific compositions to enhance the ionic conductivity.« less

Authors:
ORCiD logo [1];  [2];  [3];  [4];  [1]; ORCiD logo [1]
  1. Washington State Univ., Pullman, WA (United States)
  2. Argonne National Lab. (ANL), Argonne, IL (United States)
  3. Univ. College London, London (United Kingdom)
  4. Iowa State Univ., Ames, IA (United States)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
OSTI Identifier:
1480490
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical Chemistry
Additional Journal Information:
Journal Volume: 122; Journal Issue: 30; Journal ID: ISSN 1520-6106
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; Na ion battery; ionic conductivity; molecular dynamics; sodium sulfide glass

Citation Formats

Dive, A., Benmore, C., Wilding, M., Martin, S. W., Beckman, S., and Banerjee, Soumik. Molecular Dynamics Modeling of the Structure and Na+-Ion Transport in Na2S + SiS2 Glassy Electrolytes. United States: N. p., 2018. Web. doi:10.1021/acs.jpcb.8b04353.
Dive, A., Benmore, C., Wilding, M., Martin, S. W., Beckman, S., & Banerjee, Soumik. Molecular Dynamics Modeling of the Structure and Na+-Ion Transport in Na2S + SiS2 Glassy Electrolytes. United States. https://doi.org/10.1021/acs.jpcb.8b04353
Dive, A., Benmore, C., Wilding, M., Martin, S. W., Beckman, S., and Banerjee, Soumik. Wed . "Molecular Dynamics Modeling of the Structure and Na+-Ion Transport in Na2S + SiS2 Glassy Electrolytes". United States. https://doi.org/10.1021/acs.jpcb.8b04353. https://www.osti.gov/servlets/purl/1480490.
@article{osti_1480490,
title = {Molecular Dynamics Modeling of the Structure and Na+-Ion Transport in Na2S + SiS2 Glassy Electrolytes},
author = {Dive, A. and Benmore, C. and Wilding, M. and Martin, S. W. and Beckman, S. and Banerjee, Soumik},
abstractNote = {Solid-state sodium batteries, a relatively safe and potentially cost-effective energy-storage technology, have attracted increasing scientific attention recently for application in stationary grid-scale energy storage. Identifying solid electrolytes with high electrochemical stability and high Na+-ion conductivity at room temperature is critically important to enable high energy densities with enhanced rate capabilities. We evaluated sodium sulfide silicon sulfide, xNa2S + (1 - x)SiS2, glasses as potential glassy solid electrolytes (GSEs) using molecular dynamics (MD) simulations. We employed ab initio MD to determine ion conduction mechanisms, to calculate energy barriers for ion hops, and to correlate these to the local short-range structure of 0.50Na2S + 0.50SiS2 glass. To simulate much larger systems for accurately calculating the ionic conductivity, we parameterized empirical Buckingham-type potential and performed classical MD simulations. After validating these calculations by comparing the structure obtained from MD to that from X-ray scattering data, we calculated the ionic conductivity of these glasses for the range of 0.33 ≤ x ≤ 0.67 compositions. The calculated ionic conductivities at room temperature were in the range of similar to 10-5 S/cm for the x = 0.50 composition and increased significantly with sodium sulfide (x) content. Furthermore, these calculations provide theoretical insights into the role of Na2S content on the ionic conductivity of GSEs aiding in the selection of specific compositions to enhance the ionic conductivity.},
doi = {10.1021/acs.jpcb.8b04353},
journal = {Journal of Physical Chemistry. B, Condensed Matter, Materials, Surfaces, Interfaces and Biophysical Chemistry},
number = 30,
volume = 122,
place = {United States},
year = {Wed Jun 20 00:00:00 EDT 2018},
month = {Wed Jun 20 00:00:00 EDT 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 12 works
Citation information provided by
Web of Science

Figures / Tables:

Table 1 Table 1: Basis sets and pseudopotentials utilized for ab initio MD simulations are reported.

Save / Share:

Works referenced in this record:

Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


Advances and challenges of sodium ion batteries as post lithium ion batteries
journal, January 2015


Current trends and future challenges of electrolytes for sodium-ion batteries
journal, January 2016


Main Challenges for High Performance NAS Battery: Materials and Interfaces
journal, May 2012

  • Wen, Zhaoyin; Hu, Yingying; Wu, Xiangwei
  • Advanced Functional Materials, Vol. 23, Issue 8
  • DOI: 10.1002/adfm.201200473

Research Development on Sodium-Ion Batteries
journal, October 2014

  • Yabuuchi, Naoaki; Kubota, Kei; Dahbi, Mouad
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500192f

Sodium and sodium-ion energy storage batteries
journal, August 2012

  • Ellis, Brian L.; Nazar, Linda F.
  • Current Opinion in Solid State and Materials Science, Vol. 16, Issue 4, p. 168-177
  • DOI: 10.1016/j.cossms.2012.04.002

Parametric study of dry coating process of electrode particle with model material of sulfide solid electrolytes for all-solid-state battery
journal, January 2017


Room-temperature stationary sodium-ion batteries for large-scale electric energy storage
journal, January 2013

  • Pan, Huilin; Hu, Yong-Sheng; Chen, Liquan
  • Energy & Environmental Science, Vol. 6, Issue 8
  • DOI: 10.1039/c3ee40847g

Sodium-ion batteries: present and future
journal, January 2017

  • Hwang, Jang-Yeon; Myung, Seung-Taek; Sun, Yang-Kook
  • Chemical Society Reviews, Vol. 46, Issue 12
  • DOI: 10.1039/C6CS00776G

Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries
journal, January 2012

  • Hayashi, Akitoshi; Noi, Kousuke; Sakuda, Atsushi
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms1843

Sulfide Glass-Ceramic Electrolytes for All-Solid-State Lithium and Sodium Batteries
journal, July 2014

  • Tatsumisago, Masahiro; Hayashi, Akitoshi
  • International Journal of Applied Glass Science, Vol. 5, Issue 3
  • DOI: 10.1111/ijag.12084

Computational and Experimental Investigations of Na-Ion Conduction in Cubic Na 3 PSe 4
journal, December 2015


Na 3 PSe 4 : A Novel Chalcogenide Solid Electrolyte with High Ionic Conductivity
journal, October 2015


An Air-Stable Na 3 SbS 4 Superionic Conductor Prepared by a Rapid and Economic Synthetic Procedure
journal, June 2016

  • Wang, Hui; Chen, Yan; Hood, Zachary D.
  • Angewandte Chemie International Edition, Vol. 55, Issue 30
  • DOI: 10.1002/anie.201601546

Design and synthesis of the superionic conductor Na10SnP2S12
journal, March 2016

  • Richards, William D.; Tsujimura, Tomoyuki; Miara, Lincoln J.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11009

Fast ion motion in glassy and amorphous materials
journal, December 1983


Fast ion conducting glasses
journal, August 1985


Phase transition and the Ag + -ion diffusion in AgI: Effect of homovalent Br -ion substitution
journal, June 1981


Ionic conductivity of glasses in the MI+M2S+(0.1Ga2S3+0.9GeS2) system (M=Li, Na, K and Cs)
journal, January 2008


Development of Sulfide Solid Electrolytes and Interface Formation Processes for Bulk-Type All-Solid-State Li and Na Batteries
journal, July 2016

  • Hayashi, Akitoshi; Sakuda, Atsushi; Tatsumisago, Masahiro
  • Frontiers in Energy Research, Vol. 4
  • DOI: 10.3389/fenrg.2016.00025

Recent progress of glass and glass-ceramics as solid electrolytes for lithium secondary batteries
journal, October 2006


Structural investigations of yNa2S+(1−y)PS5/2 glasses using Raman and infrared spectroscopies
journal, December 2012


Preparation and characterization of highly sodium ion conducting Na 3 PS 4 –Na 4 SiS 4 solid electrolytes
journal, January 2014

  • Tanibata, Naoto; Noi, Kousuke; Hayashi, Akitoshi
  • RSC Adv., Vol. 4, Issue 33
  • DOI: 10.1039/C4RA00996G

High lithium ion conducting glass-ceramics in the system Li2S–P2S5
journal, October 2006


A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries
journal, January 2014

  • Seino, Yoshikatsu; Ota, Tsuyoshi; Takada, Kazunori
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE41655K

Calculation of Activation Energy of Ionic Conductivity in Silica Glasses by Classical Methods
journal, December 1954


Glasses as solid electrolytes
journal, May 1980


Ionic Conductivity of Mixed Glass Former 0.35Na 2 O + 0.65[ x B 2 O 3 + (1 – x )P 2 O 5 ] Glasses
journal, December 2013

  • Christensen, Randilynn; Olson, Garrett; Martin, Steve W.
  • The Journal of Physical Chemistry B, Vol. 117, Issue 51
  • DOI: 10.1021/jp409497z

Activation Enthalpy for Diffusion in Glass
journal, October 1986


Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties
journal, January 2014

  • Islam, M. Saiful; Fisher, Craig A. J.
  • Chem. Soc. Rev., Vol. 43, Issue 1
  • DOI: 10.1039/C3CS60199D

Sodium Ion Diffusion and Voltage Trends in Phosphates Na 4 M 3 (PO 4 ) 2 P 2 O 7 (M = Fe, Mn, Co, Ni) for Possible High-Rate Cathodes
journal, June 2015

  • Wood, Stephen M.; Eames, Chris; Kendrick, Emma
  • The Journal of Physical Chemistry C, Vol. 119, Issue 28
  • DOI: 10.1021/acs.jpcc.5b04648

Design of Li 1+2x Zn 1−x PS 4 , a new lithium ion conductor
journal, January 2016

  • Richards, William D.; Wang, Yan; Miara, Lincoln J.
  • Energy & Environmental Science, Vol. 9, Issue 10
  • DOI: 10.1039/C6EE02094A

Structural and Na-ion conduction characteristics of Na 3 PS x Se 4−x
journal, January 2016

  • Bo, Shou-Hang; Wang, Yan; Ceder, Gerbrand
  • Journal of Materials Chemistry A, Vol. 4, Issue 23
  • DOI: 10.1039/C6TA03027K

Interface Stability in Solid-State Batteries
journal, December 2015


State of the Art and Future Research Needs for Multiscale Analysis of Li-Ion Cells
journal, May 2017

  • Shah, K.; Balsara, N.; Banerjee, S.
  • Journal of Electrochemical Energy Conversion and Storage, Vol. 14, Issue 2
  • DOI: 10.1115/1.4036456

Molecular Dynamics Simulation of the Effect of Crystal Orientation on Lithium‐Ion Diffusion at the  V 2 O 5 / Li2SiO3 Interface
journal, March 1999

  • Garcia, M. E.; Garofalini, S. H.
  • Journal of The Electrochemical Society, Vol. 146, Issue 3
  • DOI: 10.1149/1.1391690

Lithium Ion Diffusion Mechanism in Lithium Lanthanum Titanate Solid-State Electrolytes from Atomistic Simulations
journal, November 2014

  • Chen, Chao-hsu; Du, Jincheng
  • Journal of the American Ceramic Society, Vol. 98, Issue 2
  • DOI: 10.1111/jace.13307

High power lithium ion battery materials by computational design
journal, July 2011


A combined molecular dynamics simulation, experimental and coupling model study of the ion dynamics in glassy ionic conductors
journal, April 2003


Molecular dynamics simulations of structural changes in mixed alkali (Li–K) silicate glasses
journal, September 1999


A new interpretation of the dynamic structure model of ion transport in molten and solid glasses
journal, January 2004

  • Bunde, Armin; Ingram, Malcolm D.; Russ, Stefanie
  • Phys. Chem. Chem. Phys., Vol. 6, Issue 13
  • DOI: 10.1039/B316738K

Complete Identification of Alkali Sites in Ion Conducting Lithium Silicate Glasses: A Computer Study of Ion Dynamics
journal, May 2003


Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach
journal, April 2005

  • VandeVondele, Joost; Krack, Matthias; Mohamed, Fawzi
  • Computer Physics Communications, Vol. 167, Issue 2
  • DOI: 10.1016/j.cpc.2004.12.014

cp2k: atomistic simulations of condensed matter systems
journal, June 2013

  • Hutter, Jürg; Iannuzzi, Marcella; Schiffmann, Florian
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 4, Issue 1
  • DOI: 10.1002/wcms.1159

Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases
journal, September 2007

  • VandeVondele, Joost; Hutter, Jürg
  • The Journal of Chemical Physics, Vol. 127, Issue 11
  • DOI: 10.1063/1.2770708

Molecular dynamics studies of the vitreous state: Simple ionic systems and silica
journal, August 1976

  • Woodcock, L. V.; Angell, C. A.; Cheeseman, P.
  • The Journal of Chemical Physics, Vol. 65, Issue 4
  • DOI: 10.1063/1.433213

A climbing image nudged elastic band method for finding saddle points and minimum energy paths
journal, December 2000

  • Henkelman, Graeme; Uberuaga, Blas P.; Jónsson, Hannes
  • The Journal of Chemical Physics, Vol. 113, Issue 22, p. 9901-9904
  • DOI: 10.1063/1.1329672

Nudged-elastic band method with two climbing images: Finding transition states in complex energy landscapes
journal, January 2015

  • Zarkevich, Nikolai A.; Johnson, Duane D.
  • The Journal of Chemical Physics, Vol. 142, Issue 2
  • DOI: 10.1063/1.4905209

Optimization methods for finding minimum energy paths
journal, April 2008

  • Sheppard, Daniel; Terrell, Rye; Henkelman, Graeme
  • The Journal of Chemical Physics, Vol. 128, Issue 13
  • DOI: 10.1063/1.2841941

The classical equation of state of gaseous helium, neon and argon
journal, October 1938

  • Buckingham, R. A.
  • Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 168, Issue 933, p. 264-283
  • DOI: 10.1098/rspa.1938.0173

New interatomic potential parameters for molecular dynamics simulations of rare-earth (RE = La, Y, Lu, Sc) aluminosilicate glass structures: exploration of RE3+ field-strength effects
journal, January 2013

  • Okhotnikov, Kirill; Stevensson, Baltzar; Edén, Mattias
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 36
  • DOI: 10.1039/c3cp51726h

A New Self-Consistent Empirical Interatomic Potential Model for Oxides, Silicates, and Silica-Based Glasses
journal, June 2006

  • Pedone, Alfonso; Malavasi, Gianluca; Menziani, M. Cristina
  • The Journal of Physical Chemistry B, Vol. 110, Issue 24
  • DOI: 10.1021/jp0611018

Shell-model molecular dynamics calculations of modified silicate glasses
journal, March 2006


Molecular dynamics study of Li2SiS3 glass
journal, October 1996


Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


Li + Cation Environment, Transport, and Mechanical Properties of the LiTFSI Doped N -Methyl- N -alkylpyrrolidinium + TFSI - Ionic Liquids
journal, August 2006

  • Borodin, Oleg; Smith, Grant D.; Henderson, Wesley
  • The Journal of Physical Chemistry B, Vol. 110, Issue 34
  • DOI: 10.1021/jp061930t

Area detector corrections for high quality synchrotron X-ray structure factor measurements
journal, January 2012

  • Skinner, Lawrie B.; Benmore, Chris J.; Parise, John B.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 662, Issue 1
  • DOI: 10.1016/j.nima.2011.09.031

Two-dimensional detector software: From real detector to idealised image or two-theta scan
journal, January 1996

  • Hammersley, A. P.; Svensson, S. O.; Hanfland, M.
  • High Pressure Research, Vol. 14, Issue 4-6, p. 235-248
  • DOI: 10.1080/08957959608201408

PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data
journal, July 2004

  • Qiu, Xiangyun; Thompson, Jeroen W.; Billinge, Simon J. L.
  • Journal of Applied Crystallography, Vol. 37, Issue 4, p. 678-678
  • DOI: 10.1107/S0021889804011744

Lattice dynamics of Na 2 S
journal, October 1980


Works referencing / citing this record:

Recent Research on Strategies to Improve Ion Conduction in Alkali Metal‐Ion Batteries
journal, April 2019