DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Niobium tungsten oxides for high-rate lithium-ion energy storage

Abstract

Here, the maximum power output and minimum charging time of a lithium-ion battery – key parameters for its use in, for example, transportation applications – depend on mixed ionic– electronic diffusion. While the discharge/charge rate and capacity can be tuned by varying the composite electrode structure, ionic transport within the active particles represents a fundamental limitation. Thus, to achieve high rates, particles are frequently reduced to nanosize dimensions despite this being disadvantageous in terms of volumetric packing density as well as cost, stability, and sustainability considerations. As an alternative to nanoscaling, we show that complex niobium tungsten oxides with topologically frustrated polyhedral arrangements and dense µm-scale particle morphologies can rapidly and reversibly intercalate large quantities of lithium. Multielectron redox, buffered volume expansion, and extremely fast lithium transport approaching that of a liquid lead to extremely high volumetric capacities and rate performance for both crystallographic shear structure and bronze-like niobium tungsten oxides. The active materials Nb16W5O55 and Nb18W16O93 offer new strategies toward designing electrodes with advantages in energy density, scalability, electrode architecture/complexity and cost as alternatives to the state-ofthe art high-rate anode material Li4Ti5O12. The direct measurement of solid-state lithium diffusion coefficients (DLi) with pulsed field gradient NMR demonstrates room temperaturemore » DLi values of 10–12–10–13 m2 × s-1 in the niobium tungsten oxides, which is several orders-ofmagnitude faster than typical electrode materials and corresponds to a characteristic diffusion length of ~10 µm for a 1 minute discharge. Materials and mechanisms that enable lithiation of µm particles in minutes have implications for high power applications, fast charging devices, all-solid-state batteries, and general approaches to electrode design and material discovery.« less

Authors:
 [1];  [2];  [3];  [1];  [1]
  1. Univ. of Cambridge, Cambridge (United Kingdom)
  2. Argonne National Lab. (ANL), Argonne, IL (United States)
  3. Diamond Light Source, Didcot (United Kingdom)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
Engineering and Physical Sciences Research Council (EPSRC); USDOE
OSTI Identifier:
1480438
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Nature (London)
Additional Journal Information:
Journal Name: Nature (London); Journal Volume: 559; Journal Issue: 7715; Journal ID: ISSN 0028-0836
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; battery; bronze structure; fast charging; niobium oxide

Citation Formats

Griffith, Kent J., Wiaderek, Kamila M., Cibin, Giannantonio, Marbella, Lauren E., and Grey, Clare P. Niobium tungsten oxides for high-rate lithium-ion energy storage. United States: N. p., 2018. Web. doi:10.1038/s41586-018-0347-0.
Griffith, Kent J., Wiaderek, Kamila M., Cibin, Giannantonio, Marbella, Lauren E., & Grey, Clare P. Niobium tungsten oxides for high-rate lithium-ion energy storage. United States. https://doi.org/10.1038/s41586-018-0347-0
Griffith, Kent J., Wiaderek, Kamila M., Cibin, Giannantonio, Marbella, Lauren E., and Grey, Clare P. Wed . "Niobium tungsten oxides for high-rate lithium-ion energy storage". United States. https://doi.org/10.1038/s41586-018-0347-0. https://www.osti.gov/servlets/purl/1480438.
@article{osti_1480438,
title = {Niobium tungsten oxides for high-rate lithium-ion energy storage},
author = {Griffith, Kent J. and Wiaderek, Kamila M. and Cibin, Giannantonio and Marbella, Lauren E. and Grey, Clare P.},
abstractNote = {Here, the maximum power output and minimum charging time of a lithium-ion battery – key parameters for its use in, for example, transportation applications – depend on mixed ionic– electronic diffusion. While the discharge/charge rate and capacity can be tuned by varying the composite electrode structure, ionic transport within the active particles represents a fundamental limitation. Thus, to achieve high rates, particles are frequently reduced to nanosize dimensions despite this being disadvantageous in terms of volumetric packing density as well as cost, stability, and sustainability considerations. As an alternative to nanoscaling, we show that complex niobium tungsten oxides with topologically frustrated polyhedral arrangements and dense µm-scale particle morphologies can rapidly and reversibly intercalate large quantities of lithium. Multielectron redox, buffered volume expansion, and extremely fast lithium transport approaching that of a liquid lead to extremely high volumetric capacities and rate performance for both crystallographic shear structure and bronze-like niobium tungsten oxides. The active materials Nb16W5O55 and Nb18W16O93 offer new strategies toward designing electrodes with advantages in energy density, scalability, electrode architecture/complexity and cost as alternatives to the state-ofthe art high-rate anode material Li4Ti5O12. The direct measurement of solid-state lithium diffusion coefficients (DLi) with pulsed field gradient NMR demonstrates room temperature DLi values of 10–12–10–13 m2 × s-1 in the niobium tungsten oxides, which is several orders-ofmagnitude faster than typical electrode materials and corresponds to a characteristic diffusion length of ~10 µm for a 1 minute discharge. Materials and mechanisms that enable lithiation of µm particles in minutes have implications for high power applications, fast charging devices, all-solid-state batteries, and general approaches to electrode design and material discovery.},
doi = {10.1038/s41586-018-0347-0},
journal = {Nature (London)},
number = 7715,
volume = 559,
place = {United States},
year = {2018},
month = {7}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 53 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1 Figure 1: Crystal structure and particle morphology of Nb16W5O55 and Nb18W16O93. a–c, Nb16W5O55 is built up from blocks of 4 × 5 octahedra with the blocks adjoined forming crystallographic shear planes. d–f, Nb18W16O93 is a 1 × 3 × 1 superstructure of the tetragonal tungsten bronze with pentagonal tunnels partiallymore » filled by –W–O– chains that form pentagonal bipyramids.« less

Save / Share:

Works referenced in this record:

Precisely Engineered Colloidal Nanoparticles and Nanocrystals for Li-Ion and Na-Ion Batteries: Model Systems or Practical Solutions?
journal, September 2014

  • Oszajca, Marek F.; Bodnarchuk, Maryna I.; Kovalenko, Maksym V.
  • Chemistry of Materials, Vol. 26, Issue 19
  • DOI: 10.1021/cm5024508

Advanced Electrodes for High Power Li-ion Batteries
journal, March 2013

  • Zaghib, Karim; Mauger, Alain; Groult, Henri
  • Materials, Vol. 6, Issue 3
  • DOI: 10.3390/ma6031028

Unraveling the Complex Delithiation Mechanisms of Olivine-Type Cathode Materials, LiFe x Co 1– x PO 4
journal, May 2016


Rigid Unit Modes in Framework Structures: Theory, Experiment and Applications
journal, January 2000

  • Dove, M. T.; Trachenko, K. O.; Tucker, M. G.
  • Reviews in Mineralogy and Geochemistry, Vol. 39, Issue 1
  • DOI: 10.2138/rmg.2000.39.01

Ab initio study of the migration of small polarons in olivine Li x FePO 4 and their association with lithium ions and vacancies
journal, March 2006


Structural Stability from Crystallographic Shear in TiO 2 –Nb 2 O 5 Phases: Cation Ordering and Lithiation Behavior of TiNb 24 O 62
journal, March 2017


Phase equilibria as related to crystal structure in the system niobium pentoxide-tungsten trioxide
journal, July 1966

  • Roth, R. S.; Waring, J. L.
  • Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, Vol. 70A, Issue 4
  • DOI: 10.6028/jres.070A.025

Negative linear compressibility
journal, January 2015

  • Cairns, Andrew B.; Goodwin, Andrew L.
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 32
  • DOI: 10.1039/C5CP00442J

Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage
journal, May 2017


Determination of the Kinetic Parameters of Mixed-Conducting Electrodes and Application to the System Li[sub 3]Sb
journal, January 1977

  • Weppner, W.
  • Journal of The Electrochemical Society, Vol. 124, Issue 10
  • DOI: 10.1149/1.2133112

Synthesis and Charge Storage Properties of Hierarchical Niobium Pentoxide/Carbon/Niobium Carbide (MXene) Hybrid Materials
journal, May 2016


Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2O8
journal, April 1996


XANES study of rhenium oxide compounds at the L 1 and L 3 absorption edges
journal, March 2012


First Principles Study of the Li10GeP2S12 Lithium Super Ionic Conductor Material
journal, December 2011

  • Mo, Yifei; Ong, Shyue Ping; Ceder, Gerbrand
  • Chemistry of Materials, Vol. 24, Issue 1, p. 15-17
  • DOI: 10.1021/cm203303y

Superionics: crystal structures and conduction processes
journal, June 2004


Genetics of superionic conductivity in lithium lanthanum titanates
journal, January 2015

  • Jay, E. E.; Rushton, M. J. D.; Chroneos, A.
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 1
  • DOI: 10.1039/C4CP04834B

Extremely slow Li ion dynamics in monoclinic Li2TiO3—probing macroscopic jump diffusion via7Li NMR stimulated echoes
journal, January 2012

  • Ruprecht, Benjamin; Wilkening, Martin; Uecker, Reinhard
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 34
  • DOI: 10.1039/c2cp41662j

A new ultrafast superionic Li-conductor: ion dynamics in Li 11 Si 2 PS 12 and comparison with other tetragonal LGPS-type electrolytes
journal, January 2014

  • Kuhn, Alexander; Gerbig, Oliver; Zhu, Changbao
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 28
  • DOI: 10.1039/C4CP02046D

Lithium ion diffusion measurements on a garnet-type solid conductor Li6.6La3Zr1.6Ta0.4O12 by using a pulsed-gradient spin-echo NMR method
journal, September 2015


Nanomaterials for Electrochemical Energy Storage: the Good and the Bad
journal, September 2016


The tungsten bronzes and related compounds
journal, January 1968

  • Dickens, P. G.; Whittingham, M. S.
  • Quarterly Reviews, Chemical Society, Vol. 22, Issue 1
  • DOI: 10.1039/qr9682200030

Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control
journal, March 2012

  • Wu, Hui; Chan, Gerentt; Choi, Jang Wook
  • Nature Nanotechnology, Vol. 7, Issue 5
  • DOI: 10.1038/nnano.2012.35

Lithium motion in the anode material LiC 6 as seen via time-domain 7 Li NMR
journal, September 2013


A Reversible Lithium Intercalation Process in an ReO[sub 3]-Type Structure PNb[sub 9]O[sub 25]
journal, January 2002

  • Patoux, Sébastien; Dolle, Mickael; Rousse, Gwenaëlle
  • Journal of The Electrochemical Society, Vol. 149, Issue 4
  • DOI: 10.1149/1.1455647

Atomic-Scale Investigation of Defects, Dopants, and Lithium Transport in the LiFePO 4 Olivine-Type Battery Material
journal, October 2005

  • Islam, M. Saiful; Driscoll, Daniel J.; Fisher, Craig A. J.
  • Chemistry of Materials, Vol. 17, Issue 20
  • DOI: 10.1021/cm050999v

Ageing mechanisms in lithium-ion batteries
journal, September 2005


Lithium ion diffusion in Li β-alumina single crystals measured by pulsed field gradient NMR spectroscopy
journal, March 2014

  • Chowdhury, Mohammed Tareque; Takekawa, Reiji; Iwai, Yoshiki
  • The Journal of Chemical Physics, Vol. 140, Issue 12
  • DOI: 10.1063/1.4869347

Electrospun WNb 12 O 33 nanowires: superior lithium storage capability and their working mechanism
journal, January 2017

  • Yan, Lei; Lan, Hua; Yu, Haoxiang
  • Journal of Materials Chemistry A, Vol. 5, Issue 19
  • DOI: 10.1039/C7TA01784G

Electrochemical Li insertion studies on WNb12O33—A shear ReO3 type structure
journal, May 2010


Li4Ti5O12 Nanoparticles Embedded in a Mesoporous Carbon Matrix as a Superior Anode Material for High Rate Lithium Ion Batteries
journal, April 2012

  • Shen, Laifa; Zhang, Xiaogang; Uchaker, Evan
  • Advanced Energy Materials, Vol. 2, Issue 6
  • DOI: 10.1002/aenm.201100720

X-ray Absorption Spectroscopy Systematics at the Tungsten L-Edge
journal, July 2014

  • Jayarathne, Upul; Chandrasekaran, Perumalreddy; Greene, Angelique F.
  • Inorganic Chemistry, Vol. 53, Issue 16
  • DOI: 10.1021/ic500256a

A structural investigation of some stable phases in the region Nb2O5.WO3–WO3
journal, May 1968

  • Stephenson, N. C.
  • Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, Vol. 24, Issue 5
  • DOI: 10.1107/S0567740868002979

Octahedral tilting in the tungsten bronzes
journal, May 2015

  • Whittle, Thomas A.; Schmid, Siegbert; Howard, Christopher J.
  • Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, Vol. 71, Issue 3
  • DOI: 10.1107/S2052520615008252

The effect of the Nb-W distribution on polaronic transport in ternary Nb-W oxides: electrical and optical properties
journal, August 1988


Li 0.6 [Li 0.2 Sn 0.8 S 2 ] – a layered lithium superionic conductor
journal, January 2016

  • Holzmann, T.; Schoop, L. M.; Ali, M. N.
  • Energy & Environmental Science, Vol. 9, Issue 8
  • DOI: 10.1039/C6EE00633G

Review—Gassing Mechanism and Suppressing Solutions in Li 4 Ti 5 O 12 -Based Lithium-Ion Batteries
journal, January 2017

  • Lv, Weiqiang; Gu, Jianmin; Niu, Yinghua
  • Journal of The Electrochemical Society, Vol. 164, Issue 9
  • DOI: 10.1149/2.0031712jes

Direct Observation of Active Material Concentration Gradients and Crystallinity Breakdown in LiFePO 4 Electrodes During Charge/Discharge Cycling of Lithium Batteries
journal, March 2014

  • Roberts, Matthew R.; Madsen, Alex; Nicklin, Chris
  • The Journal of Physical Chemistry C, Vol. 118, Issue 13
  • DOI: 10.1021/jp411152s

Nanoscale diffusion tracing by radioactive 8 Li tracer
journal, October 2014

  • Ishiyama, Hironobu; Jeong, Sun-Chan; Watanabe, Yutaka
  • Japanese Journal of Applied Physics, Vol. 53, Issue 11
  • DOI: 10.7567/JJAP.53.110303

Intergranular Cracking as a Major Cause of Long-Term Capacity Fading of Layered Cathodes
journal, May 2017


The AMPIX electrochemical cell: a versatile apparatus for in situ X-ray scattering and spectroscopic measurements
journal, November 2012

  • Borkiewicz, Olaf J.; Shyam, Badri; Wiaderek, Kamila M.
  • Journal of Applied Crystallography, Vol. 45, Issue 6
  • DOI: 10.1107/S0021889812042720

IFEFFIT  : interactive XAFS analysis and FEFF fitting
journal, March 2001


Thermodynamic and Mass Transport Properties of “LiAl”
journal, January 1979

  • Wen, C. John
  • Journal of The Electrochemical Society, Vol. 126, Issue 12
  • DOI: 10.1149/1.2128939

The effect of annealing on the concentration of Wadsley defects in the Nb2O5WO3 system
journal, May 1971


Lithium-7 NMR and ionic conductivity studies of lanthanum lithium titanate electrolytes
journal, August 1997


6 Li and 7 Li diffusion coefficients in solid lithium measured by the NMR pulsed field gradient technique
journal, March 1988


High-Rate Intercalation without Nanostructuring in Metastable Nb 2 O 5 Bronze Phases
journal, July 2016

  • Griffith, Kent J.; Forse, Alexander C.; Griffin, John M.
  • Journal of the American Chemical Society, Vol. 138, Issue 28
  • DOI: 10.1021/jacs.6b04345

Review of Battery Systems for Electrically Powered Vehicles
conference, May 1968

  • Ragone, D. V.
  • Mid-Year Meeting, SAE Technical Paper Series
  • DOI: 10.4271/680453

ATHENA , ARTEMIS , HEPHAESTUS : data analysis for X-ray absorption spectroscopy using IFEFFIT
journal, June 2005


Multiple phase formation in the binary system Nb 2 O 5 –WO 3 . I. Preparation and identification of phases
journal, July 1965


Ordered Structure and Thermal Expansion in Tungsten Bronze Pb 2 K 0.5 Li 0.5 Nb 5 O 15
journal, August 2014

  • Lin, Kun; Rong, Yangchun; Wu, Hui
  • Inorganic Chemistry, Vol. 53, Issue 17
  • DOI: 10.1021/ic501189n

Choice of collimators for a crystal spectrometer for neutron diffraction
journal, October 1958


Structure cristalline de MoNb15O40F
journal, August 1968

  • Galy, J.; Andersson, S.
  • Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, Vol. 24, Issue 8
  • DOI: 10.1107/S0567740868003651

Spin Diffusion Measurements: Spin Echoes in the Presence of a Time‐Dependent Field Gradient
journal, January 1965

  • Stejskal, E. O.; Tanner, J. E.
  • The Journal of Chemical Physics, Vol. 42, Issue 1
  • DOI: 10.1063/1.1695690

The Influence of Size on Phase Morphology and Li-Ion Mobility in Nanosized Lithiated Anatase TiO2
journal, February 2007

  • Wagemaker, Marnix; Borghols, Wouter J. H.; van Eck, Ernst R. H.
  • Chemistry - A European Journal, Vol. 13, Issue 7
  • DOI: 10.1002/chem.200600803

Two Phase Morphology Limits Lithium Diffusion in TiO 2 (Anatase):  A 7 Li MAS NMR Study
journal, November 2001

  • Wagemaker, Marnix; van de Krol, Roel; Kentgens, Arno P. M.
  • Journal of the American Chemical Society, Vol. 123, Issue 46
  • DOI: 10.1021/ja0161148

Lithium Dynamics in LiMn 2 O 4 Probed Directly by Two-Dimensional 7 Li NMR
journal, May 2001


Composition Dependence of the Energy Barrier for Lithium Diffusion in Amorphous WO[sub 3]
journal, January 2005

  • Gracia, Lourdes; García-Cañadas, Jorge; Garcia-Belmonte, Germà
  • Electrochemical and Solid-State Letters, Vol. 8, Issue 10
  • DOI: 10.1149/1.2008868

The structures of the lithium inserted metal oxides Li0.2ReO3 and Li0.36WO3
journal, November 1983


GSAS-II : the genesis of a modern open-source all purpose crystallography software package
journal, March 2013


A lithium superionic conductor
journal, July 2011

  • Kamaya, Noriaki; Homma, Kenji; Yamakawa, Yuichiro
  • Nature Materials, Vol. 10, Issue 9, p. 682-686
  • DOI: 10.1038/nmat3066

Thermodynamics and Kinetics of Lithium Intercalation into Nb[sub 2]O[sub 5] Electrodes for a 2 V Rechargeable Lithium Battery
journal, January 1999

  • Kumagai, Naoaki
  • Journal of The Electrochemical Society, Vol. 146, Issue 9
  • DOI: 10.1149/1.1392455

Lithium diffusion in lithium nitride by pulsed-field gradient NMR
journal, January 2012

  • Wang, Zhongli; Gobet, Mallory; Sarou-Kanian, Vincent
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 39
  • DOI: 10.1039/c2cp42391j

Lithium Ion Diffusion Mechanism in Lithium Lanthanum Titanate Solid-State Electrolytes from Atomistic Simulations
journal, November 2014

  • Chen, Chao-hsu; Du, Jincheng
  • Journal of the American Ceramic Society, Vol. 98, Issue 2
  • DOI: 10.1111/jace.13307

High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance
journal, April 2013

  • Augustyn, Veronica; Come, Jérémy; Lowe, Michael A.
  • Nature Materials, Vol. 12, Issue 6
  • DOI: 10.1038/nmat3601

Microscopic Li self-diffusion parameters in the lithiated anode material Li4+xTi5O12 (0 ≤x≤ 3) measured by 7Li solid state NMR
journal, January 2007

  • Wilkening, Martin; Iwaniak, Wojciech; Heine, Jessica
  • Physical Chemistry Chemical Physics, Vol. 9, Issue 47
  • DOI: 10.1039/b713311a

New Anode Framework for Rechargeable Lithium Batteries
journal, April 2011

  • Han, Jian-Tao; Huang, Yun-Hui; Goodenough, John B.
  • Chemistry of Materials, Vol. 23, Issue 8, p. 2027-2029
  • DOI: 10.1021/cm200441h

Structural Evolution and Li Dynamics in Nanophase Li 3 PS 4 by Solid-State and Pulsed-Field Gradient NMR
journal, May 2014

  • Gobet, Mallory; Greenbaum, Steve; Sahu, Gayatri
  • Chemistry of Materials, Vol. 26, Issue 11
  • DOI: 10.1021/cm5012058

Electrical and magnetic properties of Nb 2 O 5 δ crystallographic shear structures
journal, October 1991


Urchin-like hierarchical H-Nb 2 O 5 microspheres: synthesis, formation mechanism and their applications in lithium ion batteries
journal, January 2017

  • Liu, Xiaodi; Liu, Guangyin; Liu, Ying
  • Dalton Transactions, Vol. 46, Issue 33
  • DOI: 10.1039/C7DT02021J

Mesoporous TiO2-B Microspheres with Superior Rate Performance for Lithium Ion Batteries
journal, July 2011

  • Liu, Hansan; Bi, Zhonghe; Sun, Xiao-Guang
  • Advanced Materials, Vol. 23, Issue 30, p. 3450-3454
  • DOI: 10.1002/adma.201100599

Lithium diffusion in spinel Li 4 Ti 5 O 12 and LiTi 2 O 4 films detected with Li 8 β -NMR
journal, September 2017


In Situ Detection of Lithium Plating on Graphite Electrodes by Electrochemical Calorimetry
journal, January 2013

  • Downie, L. E.; Krause, L. J.; Burns, J. C.
  • Journal of The Electrochemical Society, Vol. 160, Issue 4
  • DOI: 10.1149/2.049304jes

The determination of rigid-unit modes as potential soft modes for displacive phase transitions in framework crystal structures
journal, September 1993

  • Giddy, A. P.; Dove, M. T.; Pawley, G. S.
  • Acta Crystallographica Section A Foundations of Crystallography, Vol. 49, Issue 5
  • DOI: 10.1107/S0108767393002545

Direct measurement of nanoscale lithium diffusion in solid battery materials using radioactive tracer of 8Li
journal, June 2016

  • Ishiyama, H.; Jeong, S. C.; Watanabe, Y. X.
  • Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 376
  • DOI: 10.1016/j.nimb.2015.12.036

Structural analysis of tungsten–zirconium oxide catalyst by W K-edge and L1-edge XAFS
journal, January 2008

  • Yamamoto, Takashi; Orita, Akihiro; Tanaka, Tsunehiro
  • X-Ray Spectrometry, Vol. 37, Issue 3
  • DOI: 10.1002/xrs.1044

3DBVSMAPPER : a program for automatically generating bond-valence sum landscapes
journal, August 2012


Designing Pseudocapacitance for Nb 2 O 5 /Carbide-Derived Carbon Electrodes and Hybrid Devices
journal, June 2017


NMR Relaxation Study of Ion Dynamics in Nanocrystalline and Polycrystalline LiNbO 3
journal, September 1998

  • Bork, D.; Heitjans, P.
  • The Journal of Physical Chemistry B, Vol. 102, Issue 38
  • DOI: 10.1021/jp981536y

Local Structures and Li Ion Dynamics in a Li 10 SnP 2 S 12 -Based Composite Observed by Multinuclear Solid-State NMR Spectroscopy
journal, October 2017

  • Kaus, Maximilian; Stöffler, Heike; Yavuz, Murat
  • The Journal of Physical Chemistry C, Vol. 121, Issue 42
  • DOI: 10.1021/acs.jpcc.7b08350

TiO 2 (B) Nanoribbons As Negative Electrode Material for Lithium Ion Batteries with High Rate Performance
journal, September 2010

  • Beuvier, Thomas; Richard-Plouet, Mireille; Mancini-Le Granvalet, Maryline
  • Inorganic Chemistry, Vol. 49, Issue 18
  • DOI: 10.1021/ic1010192

Sublifetime-resolution Ag L 3 -edge XANES studies of Ag-Au alloys
journal, September 1998


Neutron Diffraction and Electrochemical Study of FeNb 11 O 29 /Li 11 FeNb 11 O 29 for Lithium Battery Anode Applications
journal, March 2014

  • Pinus, Ilya; Catti, Michele; Ruffo, Riccardo
  • Chemistry of Materials, Vol. 26, Issue 6
  • DOI: 10.1021/cm500442j

Thermal stability of long range order in oxides
journal, January 1980


Mechanism of Phase Propagation During Lithiation in Carbon-Free Li 4 Ti 5 O 12 Battery Electrodes
journal, October 2012

  • Kim, Chunjoong; Norberg, Nick S.; Alexander, Caleb T.
  • Advanced Functional Materials, Vol. 23, Issue 9
  • DOI: 10.1002/adfm.201201684

High-rate nano-crystalline Li4Ti5O12 attached on carbon nano-fibers for hybrid supercapacitors
journal, September 2010


Effects of Antisite Defects on Li Diffusion in LiFePO 4 Revealed by Li Isotope Exchange
journal, May 2017

  • Liu, Hao; Choe, Min-Ju; Enrique, Raul A.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 22
  • DOI: 10.1021/acs.jpcc.7b02819

Lithium Insertion in Wadsley-Roth Phases Based on Niobium Oxide
journal, January 1983

  • Cava, R. J.
  • Journal of The Electrochemical Society, Vol. 130, Issue 12
  • DOI: 10.1149/1.2119583

A Tutorial into Practical Capacity and Mass Balancing of Lithium Ion Batteries
journal, January 2017

  • Kasnatscheew, Johannes; Placke, Tobias; Streipert, Benjamin
  • Journal of The Electrochemical Society, Vol. 164, Issue 12
  • DOI: 10.1149/2.0961712jes

Facile synthesis of novel Nb3O7F nanoflowers, their optical and photocatalytic properties
journal, January 2013

  • Idrees, Faryal; Cao, Chuanbao; Butt, Faheem K.
  • CrystEngComm, Vol. 15, Issue 40
  • DOI: 10.1039/c3ce41210e

Topotactic lithium reactions with ReO 3 related shear structures
journal, October 1981


Fracture of electrodes in lithium-ion batteries caused by fast charging
journal, October 2010

  • Zhao, Kejie; Pharr, Matt; Vlassak, Joost J.
  • Journal of Applied Physics, Vol. 108, Issue 7
  • DOI: 10.1063/1.3492617

Calculations of Li-Ion Diffusion in Olivine Phosphates
journal, September 2011

  • Dathar, Gopi Krishna Phani; Sheppard, Daniel; Stevenson, Keith J.
  • Chemistry of Materials, Vol. 23, Issue 17
  • DOI: 10.1021/cm201604g

Solution-Combustion Synthesized Nanocrystalline Li 4 Ti 5 O 12 As High-Rate Performance Li-Ion Battery Anode
journal, May 2010

  • Prakash, A. S.; Manikandan, P.; Ramesha, K.
  • Chemistry of Materials, Vol. 22, Issue 9
  • DOI: 10.1021/cm100071z

Nanoparticulate TiO2(B): An Anode for Lithium-Ion Batteries
journal, January 2012

  • Ren, Yu; Liu, Zheng; Pourpoint, Frédérique
  • Angewandte Chemie International Edition, Vol. 51, Issue 9
  • DOI: 10.1002/anie.201108300

NMR studies on lithium ion migration in sulfide-based conductors, amorphous and crystalline Li3PS4
journal, February 2016


Li-ion diffusion in Li 4 Ti 5 O 12 and LiTi 2 O 4 battery materials detected by muon spin spectroscopy
journal, July 2015


Long-range Li ion diffusion in NASICON-type Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 (LAGP) studied by 7 Li pulsed-gradient spin-echo NMR
journal, January 2017

  • Hayamizu, Kikuko; Seki, Shiro
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 34
  • DOI: 10.1039/C7CP03647G

Hierarchically structured lithium titanate for ultrafast charging in long-life high capacity batteries
journal, May 2017

  • Odziomek, Mateusz; Chaput, Frédéric; Rutkowska, Anna
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms15636

Tetragonal Li10GeP2S12 and Li7GePS8 – exploring the Li ion dynamics in LGPS Li electrolytes
journal, January 2013

  • Kuhn, Alexander; Duppel, Viola; Lotsch, Bettina V.
  • Energy & Environmental Science, Vol. 6, Issue 12
  • DOI: 10.1039/c3ee41728j

Lithium Lanthanum Titanates:  A Review
journal, October 2003

  • Stramare, S.; Thangadurai, V.; Weppner, W.
  • Chemistry of Materials, Vol. 15, Issue 21
  • DOI: 10.1021/cm0300516

Li-ion site disorder driven superionic conductivity in solid electrolytes: a first-principles investigation of β-Li 3 PS 4
journal, January 2017

  • Phani Dathar, Gopi Krishna; Balachandran, Janakiraman; Kent, Paul R. C.
  • Journal of Materials Chemistry A, Vol. 5, Issue 3
  • DOI: 10.1039/C6TA07713G

Sodium-ion diffusion and ordering in single-crystal P 2 -Na x CoO 2
journal, August 2008


Gassing in Li4Ti5O12-based batteries and its remedy
journal, December 2012

  • He, Yan-Bing; Li, Baohua; Liu, Ming
  • Scientific Reports, Vol. 2, Issue 1
  • DOI: 10.1038/srep00913

Ionic mobility in Nasicon-type LiM IV 2(PO 4 ) 3 materials followed by 7 Li NMR spectroscopy.
journal, January 2011


Nanoparticulate TiO2(B): An Anode for Lithium-Ion Batteries
journal, January 2012

  • Ren, Yu; Liu, Zheng; Pourpoint, Frédérique
  • Angewandte Chemie, Vol. 124, Issue 9
  • DOI: 10.1002/ange.201108300

Magnetosomes could be protective shields against metal stress in magnetotactic bacteria
journal, July 2020


Effects of Antisite Defects on Li Diffusion in LiFePO4 Revealed by Li Isotope Exchange
text, January 2017

  • Liu, H.; Choe, Mj; Enrique, Ra
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.23930

Unraveling the Complex Delithiation Mechanisms of Olivine-Type Cathode Materials, LiFexCo1-xPO4
text, January 2016

  • Strobridge, Fiona C.; Liu, Hao; Leskes, Michal
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.34

Lithium Lanthanum Titanates: A Review
journal, December 2003


Works referencing / citing this record:

A Game Changer: Functional Nano/Micromaterials for Smart Rechargeable Batteries
journal, August 2019

  • Ryu, Jaegeon; Song, Woo‐Jin; Lee, Sangyeop
  • Advanced Functional Materials, Vol. 30, Issue 2
  • DOI: 10.1002/adfm.201902499

Progressively Exposing Active Facets of 2D Nanosheets toward Enhanced Pseudocapacitive Response and High‐Rate Sodium Storage
journal, March 2019


Machine Learning Interatomic Potentials as Emerging Tools for Materials Science
journal, September 2019

  • Deringer, Volker L.; Caro, Miguel A.; Csányi, Gábor
  • Advanced Materials, Vol. 31, Issue 46
  • DOI: 10.1002/adma.201902765

Coupling Topological Insulator SnSb 2 Te 4 Nanodots with Highly Doped Graphene for High‐Rate Energy Storage
journal, November 2019


Conductive Copper Niobate: Superior Li + ‐Storage Capability and Novel Li + ‐Transport Mechanism
journal, August 2019

  • Yang, Liting; Zhu, Xiangzhen; Li, Xiaohui
  • Advanced Energy Materials, Vol. 9, Issue 39
  • DOI: 10.1002/aenm.201902174

Approaching the Lithiation Limit of MoS 2 While Maintaining Its Layered Crystalline Structure to Improve Lithium Storage
journal, February 2019

  • Zhu, Zhiqiang; Tang, Yuxin; Leow, Wan Ru
  • Angewandte Chemie International Edition, Vol. 58, Issue 11
  • DOI: 10.1002/anie.201813698

Enhancing the Rate Capability of Niobium Oxide Electrode through Rare‐Earth Doping Engineering
journal, September 2019


VS 4 ‐Decorated Carbon Nanotubes for Lithium Storage with Pseudocapacitance Contribution
journal, March 2020


Superior Electrochemical Performance of WNb 2 O 8 Nanorods Triggered by Ultra‐Efficient Li + Diffusion
journal, January 2020


Niobium‐Based Oxides Toward Advanced Electrochemical Energy Storage: Recent Advances and Challenges
journal, February 2019


Infinitesimal sulfur fusion yields quasi-metallic bulk silicon for stable and fast energy storage
journal, May 2019


In situ formation of vanadium nitride quantum dots on N-doped carbon hollow spheres for superior lithium and sodium storage
journal, January 2019

  • Yuan, Jun; Hu, Xiang; Chen, Junxiang
  • Journal of Materials Chemistry A, Vol. 7, Issue 15
  • DOI: 10.1039/c8ta12512k

A highly Li + -conductive HfNb 24 O 62 anode material for superior Li + storage
journal, January 2020

  • Fu, Qingfeng; Cao, Haijie; Liang, Guisheng
  • Chemical Communications, Vol. 56, Issue 4
  • DOI: 10.1039/c9cc07447c

A new family of cation-disordered Zn(Cu)–Si–P compounds as high-performance anodes for next-generation Li-ion batteries
journal, January 2019

  • Li, Wenwu; Li, Xinwei; Liao, Jun
  • Energy & Environmental Science, Vol. 12, Issue 7
  • DOI: 10.1039/c9ee00953a

A new nanowire-based lithium hexaoxotungstate anode for lithium-ion batteries
journal, January 2019

  • Akram, Muhammad Zain; Thapa, Arjun Kumar; Ajayi, Babajide Patrick
  • Nanoscale Advances, Vol. 1, Issue 7
  • DOI: 10.1039/c9na00217k

Metal–organic framework derived 3D graphene decorated NaTi 2 (PO 4 ) 3 for fast Na-ion storage
journal, January 2019

  • Wang, Lei; Huang, Zhennan; Wang, Bo
  • Nanoscale, Vol. 11, Issue 15
  • DOI: 10.1039/c9nr00610a

α-Ni(OH) 2 /NiS 1.97 heterojunction composites with excellent ion and electron transport properties for advanced supercapacitors
journal, January 2019

  • Wei, Wutao; Wu, Jiarui; Cui, Shizhong
  • Nanoscale, Vol. 11, Issue 13
  • DOI: 10.1039/c9nr00962k

Design, synthesis and lithium-ion storage capability of Al 0.5 Nb 24.5 O 62
journal, January 2019

  • Fu, Qingfeng; Li, Renjie; Zhu, Xiangzhen
  • Journal of Materials Chemistry A, Vol. 7, Issue 34
  • DOI: 10.1039/c9ta04644e

Zinc niobate materials: crystal structures, energy-storage capabilities and working mechanisms
journal, January 2019

  • Zhu, Xiangzhen; Cao, Haijie; Li, Renjie
  • Journal of Materials Chemistry A, Vol. 7, Issue 44
  • DOI: 10.1039/c9ta07818e

A mechanistic study of mesoporous TiO 2 nanoparticle negative electrode materials with varying crystallinity for lithium ion batteries
journal, January 2020

  • Deng, Changjian; Lau, Miu Lun; Ma, Chunrong
  • Journal of Materials Chemistry A, Vol. 8, Issue 6
  • DOI: 10.1039/c9ta12499c

Engineering MoS2 Nanosheets Anchored on Metal Organic Frameworks Derived Carbon Polyhedra for Superior Lithium and Potassium Storage
journal, December 2019


Identification of Phase Control of Carbon‐Confined Nb 2 O 5 Nanoparticles toward High‐Performance Lithium Storage
journal, March 2019


Co–B Nanoflakes as Multifunctional Bridges in ZnCo 2 O 4 Micro‐/Nanospheres for Superior Lithium Storage with Boosted Kinetics and Stability
journal, February 2019

  • Deng, Jiaojiao; Yu, Xiaoliang; Qin, Xianying
  • Advanced Energy Materials, Vol. 9, Issue 14
  • DOI: 10.1002/aenm.201803612

Boosting Solid-State Diffusivity and Conductivity in Lithium Superionic Argyrodites by Halide Substitution
journal, May 2019

  • Adeli, Parvin; Bazak, J. David; Park, Kern Ho
  • Angewandte Chemie International Edition, Vol. 58, Issue 26
  • DOI: 10.1002/anie.201814222

Boosting fast energy storage by synergistic engineering of carbon and deficiency
journal, January 2020


Nanosheet-based Nb 12 O 29 hierarchical microspheres for enhanced lithium storage
journal, January 2019

  • Li, Renjie; Zhu, Xiangzhen; Fu, Qingfeng
  • Chemical Communications, Vol. 55, Issue 17
  • DOI: 10.1039/c8cc09924c

A new design strategy for redox-active molecular assemblies with crystalline porous structures for lithium-ion batteries
journal, January 2020

  • Nakashima, Kensuke; Shimizu, Takeshi; Kamakura, Yoshinobu
  • Chemical Science, Vol. 11, Issue 1
  • DOI: 10.1039/c9sc04175c

An advanced cathode material for high-power Li-ion storage full cells with a long lifespan
journal, January 2019

  • Huang, Haijian; Pan, Long; Chen, Xi
  • Journal of Materials Chemistry A, Vol. 7, Issue 39
  • DOI: 10.1039/c9ta08000g

Green and tunable fabrication of graphene-like N-doped carbon on a 3D metal substrate as a binder-free anode for high-performance potassium-ion batteries
journal, January 2019

  • An, Yongling; Tian, Yuan; Li, Yuan
  • Journal of Materials Chemistry A, Vol. 7, Issue 38
  • DOI: 10.1039/c9ta08721d

Black BiVO 4 : size tailored synthesis, rich oxygen vacancies, and sodium storage performance
journal, January 2020

  • Xu, Xiaosa; Xu, Youxun; Xu, Fei
  • Journal of Materials Chemistry A, Vol. 8, Issue 4
  • DOI: 10.1039/c9ta13021g

Architecting hierarchical shell porosity of hollow prussian blue‐derived iron oxide for enhanced Li storage
journal, October 2019

  • Zhao, Z.; Liu, X.; Luan, C.
  • Journal of Microscopy, Vol. 276, Issue 2
  • DOI: 10.1111/jmi.12836

Fast Na‐Ion Intercalation in Zinc Vanadate for High‐Performance Na‐Ion Hybrid Capacitor
journal, October 2018

  • Huang, Haijian; Kundu, Dipan; Yan, Runyu
  • Advanced Energy Materials, Vol. 8, Issue 35
  • DOI: 10.1002/aenm.201802800

Approaching the Lithiation Limit of MoS 2 While Maintaining Its Layered Crystalline Structure to Improve Lithium Storage
journal, February 2019


Boosting Solid‐State Diffusivity and Conductivity in Lithium Superionic Argyrodites by Halide Substitution
journal, May 2019

  • Adeli, Parvin; Bazak, J. David; Park, Kern Ho
  • Angewandte Chemie, Vol. 131, Issue 26
  • DOI: 10.1002/ange.201814222

A Flexible Quasi‐Solid‐State Bifunctional Device with Zinc‐Ion Microbattery and Photodetector
journal, May 2019


High-rate lithium ion energy storage to facilitate increased penetration of photovoltaic systems in electricity grids
text, January 2019

  • Lennon, Alison; Jiang, Yu; Hall, Charles
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.70661

Structural insights into the formation and voltage degradation of lithium- and manganese-rich layered oxides
text, January 2019

  • Hua, Weibo; Wang, Suning; Knapp, Michael
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.60446

Interfacial Lattice‐Strain‐Driven Generation of Oxygen Vacancies in an Aerobic‐Annealed TiO 2 (B) Electrode
journal, November 2019


High-rate lithium ion energy storage to facilitate increased penetration of photovoltaic systems in electricity grids
text, January 2020

  • Lennon, Alison; Jiang, Yu; Hall, Charles
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.57869

Structural insights into the formation and voltage degradation of lithium- and manganese-rich layered oxides
text, January 2019

  • Hua, Weibo; Wang, Suning; Knapp, Michael
  • Deutsches Elektronen-Synchrotron, DESY, Hamburg
  • DOI: 10.3204/pubdb-2019-04472

Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.