skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Skyrmion Lattice Topological Hall Effect near Room Temperature

Abstract

Magnetic skyrmions are stable nanosized spin structures that can be displaced at low electrical current densities. Because of these properties, they have been proposed as building blocks of future electronic devices with unprecedentedly high information density and low energy consumption. The electrical detection of an ordered skyrmion lattice via the Topological Hall Effect (THE) in a bulk crystal, has so far been demonstrated only at cryogenic temperatures in the MnSi family of compounds. Here, we report the observation of a skyrmion lattice Topological Hall Effect near room temperature (276 K) in a mesoscopic lamella carved from a bulk crystal of FeGe. This region coincides with the skyrmion lattice location revealed by neutron scattering. We provide clear evidence of a re-entrant helicoid magnetic phase adjacent to the skyrmion phase, and discuss the large THE amplitude (5 nΩ.cm) in view of the ordinary Hall Effect.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [2];  [3];  [1]; ORCiD logo [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. Univ. of Wisconsin, Madison, WI (United States). Dept. of Chemistry
  3. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Centre for Integrated Nanotechnologies
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC); USDOE National Nuclear Security Administration (NNSA); LANL Laboratory Directed Research and Development (LDRD) Program; National Science Foundation (NSF)
OSTI Identifier:
1480015
Report Number(s):
LA-UR-17-29194
Journal ID: ISSN 2045-2322
Grant/Contract Number:  
AC52-06NA25396; NA0003525; ECCS-1609585; DGE-1256259
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 8; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Material Science; skyrmion, Hall Effect,

Citation Formats

Leroux, Maxime, Stolt, Matthew J., Jin, Song, Pete, Douglas V., Reichhardt, Charles, and Maiorov, Boris. Skyrmion Lattice Topological Hall Effect near Room Temperature. United States: N. p., 2018. Web. https://doi.org/10.1038/s41598-018-33560-2.
Leroux, Maxime, Stolt, Matthew J., Jin, Song, Pete, Douglas V., Reichhardt, Charles, & Maiorov, Boris. Skyrmion Lattice Topological Hall Effect near Room Temperature. United States. https://doi.org/10.1038/s41598-018-33560-2
Leroux, Maxime, Stolt, Matthew J., Jin, Song, Pete, Douglas V., Reichhardt, Charles, and Maiorov, Boris. Fri . "Skyrmion Lattice Topological Hall Effect near Room Temperature". United States. https://doi.org/10.1038/s41598-018-33560-2. https://www.osti.gov/servlets/purl/1480015.
@article{osti_1480015,
title = {Skyrmion Lattice Topological Hall Effect near Room Temperature},
author = {Leroux, Maxime and Stolt, Matthew J. and Jin, Song and Pete, Douglas V. and Reichhardt, Charles and Maiorov, Boris},
abstractNote = {Magnetic skyrmions are stable nanosized spin structures that can be displaced at low electrical current densities. Because of these properties, they have been proposed as building blocks of future electronic devices with unprecedentedly high information density and low energy consumption. The electrical detection of an ordered skyrmion lattice via the Topological Hall Effect (THE) in a bulk crystal, has so far been demonstrated only at cryogenic temperatures in the MnSi family of compounds. Here, we report the observation of a skyrmion lattice Topological Hall Effect near room temperature (276 K) in a mesoscopic lamella carved from a bulk crystal of FeGe. This region coincides with the skyrmion lattice location revealed by neutron scattering. We provide clear evidence of a re-entrant helicoid magnetic phase adjacent to the skyrmion phase, and discuss the large THE amplitude (5 nΩ.cm) in view of the ordinary Hall Effect.},
doi = {10.1038/s41598-018-33560-2},
journal = {Scientific Reports},
number = ,
volume = 8,
place = {United States},
year = {2018},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Figures / Tables:

Figure 1. Figure 1.: Nanofabrication of electrical transport sample by Focused Ion Beam (FIB). (a) Electron microscope picture. False colours: (yellow) lamella sample, (blue) FeGe single crystal, (green) FIB nanoprobe tip. FeGe lamella sample carved from a pyramidal FeGe single crystal, before final cut and lift-out with nanoprobe. The single crystal ismore » electrically grounded to the FIB sample holder with silver paint. (b) Lamella with platinum electrodes on silicon oxide chip. Final dimensions: 10 × 25 × 0.75 $μ$m3. The electrical current flows along [110] (see arrow) and the magnetic field is applied perpendicular to the flat face of the lamella along [001]. False colours: (yellow) lamella sample, (red) platinum contacts deposited by FIB, (light grey) evaporated platinum strips, (dark grey) silicon oxide chip.« less

Save / Share:

Works referenced in this record:

Topological properties and dynamics of magnetic skyrmions
journal, December 2013


Magnetic skyrmions: advances in physics and potential applications
journal, June 2017


Skyrmions on the track
journal, March 2013

  • Fert, Albert; Cros, Vincent; Sampaio, João
  • Nature Nanotechnology, Vol. 8, Issue 3
  • DOI: 10.1038/nnano.2013.29

Magnetic skyrmions: from fundamental to applications
journal, September 2016

  • Finocchio, Giovanni; Büttner, Felix; Tomasello, Riccardo
  • Journal of Physics D: Applied Physics, Vol. 49, Issue 42
  • DOI: 10.1088/0022-3727/49/42/423001

Dynamics of magnetic skyrmions
journal, January 2015


Spontaneous skyrmion ground states in magnetic metals
journal, August 2006

  • Rößler, U. K.; Bogdanov, A. N.; Pfleiderer, C.
  • Nature, Vol. 442, Issue 7104, p. 797-801
  • DOI: 10.1038/nature05056

Skyrmion Lattice in a Chiral Magnet
journal, February 2009


Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe
journal, December 2010

  • Yu, X. Z.; Kanazawa, N.; Onose, Y.
  • Nature Materials, Vol. 10, Issue 2
  • DOI: 10.1038/nmat2916

Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures
journal, January 2016

  • Boulle, Olivier; Vogel, Jan; Yang, Hongxin
  • Nature Nanotechnology, Vol. 11, Issue 5
  • DOI: 10.1038/nnano.2015.315

Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers
journal, July 2017

  • Soumyanarayanan, Anjan; Raju, M.; Gonzalez Oyarce, A. L.
  • Nature Materials, Vol. 16, Issue 9
  • DOI: 10.1038/nmat4934

Electrical detection of single magnetic skyrmions in metallic multilayers at room temperature
journal, January 2018

  • Maccariello, Davide; Legrand, William; Reyren, Nicolas
  • Nature Nanotechnology, Vol. 13, Issue 3
  • DOI: 10.1038/s41565-017-0044-4

Anisotropic Superexchange Interaction and Weak Ferromagnetism
journal, October 1960


Topological effects in nanomagnetism: from superparamagnetism to chiral quantum solitons
journal, February 2012


Spin Transfer Torques in MnSi at Ultralow Current Densities
journal, December 2010


Emergent electrodynamics of skyrmions in a chiral magnet
journal, February 2012

  • Schulz, T.; Ritz, R.; Bauer, A.
  • Nature Physics, Vol. 8, Issue 4
  • DOI: 10.1038/nphys2231

Collective Transport Properties of Driven Skyrmions with Random Disorder
journal, May 2015


Topological Hall Effect in the A Phase of MnSi
journal, May 2009


Real-Space and Reciprocal-Space Berry Phases in the Hall Effect of Mn 1 x Fe x Si
journal, May 2014


Current-driven dynamics of skyrmions stabilized in MnSi nanowires revealed by topological Hall effect
journal, September 2015

  • Liang, Dong; DeGrave, John P.; Stolt, Matthew J.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9217

Giant generic topological Hall resistivity of MnSi under pressure
journal, April 2013


Robust Zero-Field Skyrmion Formation in FeGe Epitaxial Thin Films
journal, January 2017


Extended Skyrmion Phase in Epitaxial FeGe ( 111 ) Thin Films
journal, June 2012


Scattering mechanisms in textured FeGe thin films: Magnetoresistance and the anomalous Hall effect
journal, July 2014


Discretized topological Hall effect emerging from skyrmions in constricted geometry
journal, January 2015


Chiral bobbers and skyrmions in epitaxial FeGe/Si(111) films
journal, April 2018


Current-induced skyrmion dynamics in constricted geometries
journal, September 2013

  • Iwasaki, Junichi; Mochizuki, Masahito; Nagaosa, Naoto
  • Nature Nanotechnology, Vol. 8, Issue 10
  • DOI: 10.1038/nnano.2013.176

Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions
journal, March 2015

  • Zhang, Xichao; Ezawa, Motohiko; Zhou, Yan
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep09400

Blowing magnetic skyrmion bubbles
journal, June 2015


Dynamics and inertia of skyrmionic spin structures
journal, February 2015

  • Büttner, Felix; Moutafis, C.; Schneider, M.
  • Nature Physics, Vol. 11, Issue 3
  • DOI: 10.1038/nphys3234

Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets
journal, February 2016

  • Woo, Seonghoon; Litzius, Kai; Krüger, Benjamin
  • Nature Materials, Vol. 15, Issue 5
  • DOI: 10.1038/nmat4593

Magnetic skyrmions in confined geometries: Effect of the magnetic field and the disorder
journal, June 2018

  • Juge, Roméo; Je, Soong-Geun; de Souza Chaves, Dayane
  • Journal of Magnetism and Magnetic Materials, Vol. 455
  • DOI: 10.1016/j.jmmm.2017.10.030

Skyrmion flow near room temperature in an ultralow current density
journal, January 2012

  • Yu, X. Z.; Kanazawa, N.; Zhang, W. Z.
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms1990

A new class of chiral materials hosting magnetic skyrmions beyond room temperature
journal, July 2015

  • Tokunaga, Y.; Yu, X. Z.; White, J. S.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8638

Current-Induced Nucleation and Annihilation of Magnetic Skyrmions at Room Temperature in a Chiral Magnet
journal, March 2017

  • Yu, Xiuzhen; Morikawa, Daisuke; Tokunaga, Yusuke
  • Advanced Materials, Vol. 29, Issue 21
  • DOI: 10.1002/adma.201606178

Internal structure of hexagonal skyrmion lattices in cubic helimagnets
journal, September 2016


Selective Chemical Vapor Deposition Growth of Cubic FeGe Nanowires That Support Stabilized Magnetic Skyrmions
journal, December 2016


Complex Chiral Modulations in FeGe Close to Magnetic Ordering
journal, February 2013


Precursor Phenomena at the Magnetic Ordering of the Cubic Helimagnet FeGe
journal, September 2011


Thermodynamic investigations in the precursor region of FeGe
journal, February 2013

  • Cevey, L.; Wilhelm, H.; Schmidt, M.
  • physica status solidi (b), Vol. 250, Issue 3
  • DOI: 10.1002/pssb.201200632

Topological spin dynamics in cubic FeGe near room temperature
journal, November 2017

  • Turgut, Emrah; Stolt, Matthew J.; Jin, Song
  • Journal of Applied Physics, Vol. 122, Issue 18
  • DOI: 10.1063/1.4997013

Room-temperature helimagnetism in FeGe thin films
journal, March 2017


Experimental observation of chiral magnetic bobbers in B20-type FeGe
journal, April 2018

  • Zheng, Fengshan; Rybakov, Filipp N.; Borisov, Aleksandr B.
  • Nature Nanotechnology, Vol. 13, Issue 6
  • DOI: 10.1038/s41565-018-0093-3

Hall effect and transmission electron microscopy of epitaxial MnSi thin films
journal, December 2014


Comment on “Robust Formation of Skyrmions and Topological Hall Effect Anomaly in Epitaxial Thin Films of MnSi”
journal, February 2014


Neutron study of in-plane skyrmions in MnSi thin films
journal, August 2017


Scaling study and thermodynamic properties of the cubic helimagnet FeGe
journal, October 2016


First-Order Transition from a Kondo Insulator to a Ferromagnetic Metal in Single Crystalline F e S i 1 x G e x
journal, July 2003


Metallic State in Cubic FeGe Beyond Its Quantum Phase Transition
journal, January 2007


Real-space Berry phases: Skyrmion soccer (invited)
journal, May 2014

  • Everschor-Sitte, Karin; Sitte, Matthias
  • Journal of Applied Physics, Vol. 115, Issue 17
  • DOI: 10.1063/1.4870695

A nontrivial crossover in topological Hall effect regimes
journal, December 2017


Critical phenomena of emergent magnetic monopoles in a chiral magnet
journal, May 2016

  • Kanazawa, N.; Nii, Y.; Zhang, X. -X.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11622

Magnetic structures of cubic FeGe studied by small-angle neutron scattering
journal, September 1989


    Works referencing / citing this record:

    Electrical Detection and Magnetic Imaging of Stabilized Magnetic Skyrmions in Fe 1− x Co x Ge ( x < 0.1) Microplates
    journal, February 2019

    • Stolt, Matthew J.; Schneider, Sebastian; Mathur, Nitish
    • Advanced Functional Materials, Vol. 29, Issue 12
    • DOI: 10.1002/adfm.201805418

    Topological and Chiral Spin Hall Effects
    journal, February 2019

    • Rozhansky, I. V.; Denisov, K. S.; Lifshits, M. B.
    • physica status solidi (b), Vol. 256, Issue 6
    • DOI: 10.1002/pssb.201900033

    Magnetic skyrmions in nanostructures of non-centrosymmetric materials
    journal, December 2019

    • Mathur, Nitish; Stolt, Matthew J.; Jin, Song
    • APL Materials, Vol. 7, Issue 12
    • DOI: 10.1063/1.5130423

    General theory of the topological Hall effect in systems with chiral spin textures
    journal, November 2018


    Complex magnetism of B20-MnGe: from spin-spirals, hedgehogs to monopoles
    journal, August 2019

    • Bornemann, Marcel; Grytsiuk, Sergii; Baumeister, Paul F.
    • Journal of Physics: Condensed Matter, Vol. 31, Issue 48
    • DOI: 10.1088/1361-648x/ab38a0

    Comparative study of topological Hall effect and skyrmions in NiMnIn and NiMnGa
    journal, October 2019

    • Zhang, Wenyong; Balasubramanian, Balamurugan; Ullah, Ahsan
    • Applied Physics Letters, Vol. 115, Issue 17
    • DOI: 10.1063/1.5120406

      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.