skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Efficiency increased to 15.2% for ultra-thin Cu(In,Ga)Se 2 solar cells

Abstract

We improved the efficiency of ultra-thin (0.49-um-thick) Cu(In,Ga)Se 2 solar cells to 15.2% (officially measured). To achieve these results, we modified growth conditions from the 3-stage process but did not add post-deposition treatments or additional material layers. The increase in device efficiency is attributed to a steeper Ga gradient in the CIGS with higher Ga content near the Mo back contact, which can hinder electron-hole recombination at the interface. We discuss device measurements and film characterization for ultra-thin CIGS. Modeling is presented that shows the route to even higher efficiencies for devices with CIGS thicknesses of 0.5 um.

Authors:
ORCiD logo [1];  [1]; ORCiD logo [1];  [1];  [1];  [1];  [1]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Solar Energy Technologies Office (EE-4S)
OSTI Identifier:
1479872
Alternate Identifier(s):
OSTI ID: 1455074
Report Number(s):
NREL/JA-5K00-70468
Journal ID: ISSN 1062-7995
Grant/Contract Number:  
AC36-08GO28308; SuNLaMP 30296
Resource Type:
Accepted Manuscript
Journal Name:
Progress in Photovoltaics
Additional Journal Information:
Journal Volume: 26; Journal Issue: 11; Journal ID: ISSN 1062-7995
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; 36 MATERIALS SCIENCE; Cu(In,Ga)Se2; CIGS; photovoltaic cells; thin films; semiconductor device modeling; current-voltage characteristics

Citation Formats

Mansfield, Lorelle M., Kanevce, Ana, Harvey, Steven P., Bowers, Karen A., Beall, Carolyn L., Glynn, Stephen, and Repins, Ingrid L. Efficiency increased to 15.2% for ultra-thin Cu(In,Ga)Se2 solar cells. United States: N. p., 2018. Web. doi:10.1002/pip.3033.
Mansfield, Lorelle M., Kanevce, Ana, Harvey, Steven P., Bowers, Karen A., Beall, Carolyn L., Glynn, Stephen, & Repins, Ingrid L. Efficiency increased to 15.2% for ultra-thin Cu(In,Ga)Se2 solar cells. United States. doi:10.1002/pip.3033.
Mansfield, Lorelle M., Kanevce, Ana, Harvey, Steven P., Bowers, Karen A., Beall, Carolyn L., Glynn, Stephen, and Repins, Ingrid L. Tue . "Efficiency increased to 15.2% for ultra-thin Cu(In,Ga)Se2 solar cells". United States. doi:10.1002/pip.3033. https://www.osti.gov/servlets/purl/1479872.
@article{osti_1479872,
title = {Efficiency increased to 15.2% for ultra-thin Cu(In,Ga)Se2 solar cells},
author = {Mansfield, Lorelle M. and Kanevce, Ana and Harvey, Steven P. and Bowers, Karen A. and Beall, Carolyn L. and Glynn, Stephen and Repins, Ingrid L.},
abstractNote = {We improved the efficiency of ultra-thin (0.49-um-thick) Cu(In,Ga)Se2 solar cells to 15.2% (officially measured). To achieve these results, we modified growth conditions from the 3-stage process but did not add post-deposition treatments or additional material layers. The increase in device efficiency is attributed to a steeper Ga gradient in the CIGS with higher Ga content near the Mo back contact, which can hinder electron-hole recombination at the interface. We discuss device measurements and film characterization for ultra-thin CIGS. Modeling is presented that shows the route to even higher efficiencies for devices with CIGS thicknesses of 0.5 um.},
doi = {10.1002/pip.3033},
journal = {Progress in Photovoltaics},
number = 11,
volume = 26,
place = {United States},
year = {2018},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Figures / Tables:

TABLE I TABLE I: J-V PARAMETERS OF BEST THIN DEVICES

Save / Share:

Works referenced in this record:

Band-gap grading in Cu(In,Ga)Se2 solar cells
journal, November 2005


CuInSe2 phase formation during Cu2Se/In2Se3 interdiffusion reaction
journal, April 2000

  • Park, J. S.; Dong, Z.; Kim, Sungtae
  • Journal of Applied Physics, Vol. 87, Issue 8
  • DOI: 10.1063/1.372400

The impact of reducing the thickness of electrodeposited stacked Cu/In/Ga layers on the performance of CIGS solar cells
journal, April 2017


An assessment of metal supply sustainability as an input to policy: security of supply extraction rates, stocks-in-use, recycling, and risk of scarcity
journal, January 2017


Optical functions of chalcopyrite CuGaxIn1-xSe2 alloys
journal, May 2002

  • Alonso, M. I.; Garriga, M.; Durante Rincón, C. A.
  • Applied Physics A: Materials Science & Processing, Vol. 74, Issue 5, p. 659-664
  • DOI: 10.1007/s003390100931

Enhanced performance of ultra-thin Cu(In,Ga)Se2 solar cells deposited at low process temperature
journal, January 2015


High‐efficiency CuIn x Ga 1− x Se 2 solar cells made from (In x ,Ga 1− x ) 2 Se 3 precursor films
journal, July 1994

  • Gabor, Andrew M.; Tuttle, John R.; Albin, David S.
  • Applied Physics Letters, Vol. 65, Issue 2
  • DOI: 10.1063/1.112670

Predicting Ga and Cu Profiles in Co-Evaporated Cu(In,Ga)Se 2 Using Modified Diffusion Equations and a Spreadsheet
journal, January 2017

  • Repins, Ingrid L.; Harvey, Steve; Bowers, Karen
  • MRS Advances, Vol. 2, Issue 53
  • DOI: 10.1557/adv.2017.350

Cu deficiency in multi-stage co-evaporated Cu(In,Ga)Se2 for solar cells applications: Microstructure and Ga in-depth alloying
journal, May 2010


Influence of Varying Cu Content on Growth and Performance of Ga-Graded Cu(In,Ga)Se 2 Solar Cells
journal, November 2015


Bandgap optimization of submicron-thick Cu(In,Ga)Se 2 solar cells : Bandgap optimization of submicron-thick Cu(In,Ga)Se
journal, August 2014

  • Yang, Shihang; Zhu, Jiakuan; Zhang, Xieqiu
  • Progress in Photovoltaics: Research and Applications, Vol. 23, Issue 9
  • DOI: 10.1002/pip.2543

Gallium diffusion and diffusivity in CuInSe 2 epitaxial layers
journal, December 1996

  • Schroeder, David J.; Berry, Gene D.; Rockett, Angus A.
  • Applied Physics Letters, Vol. 69, Issue 26
  • DOI: 10.1063/1.117820

Ultrathin Cu(In,Ga)Se 2 based solar cells
journal, July 2017


Review on light management by nanostructures in chalcopyrite solar cells
journal, March 2017


Effect of Reduced Cu(InGa)(SeS)$_{\bm 2}$ Thickness Using Three-Step H$_{\bm 2}$Se/Ar/H$_{\bm 2}$S Reaction of Cu–In–Ga Metal Precursor
journal, January 2013


Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se 2 solar cells : Employing Si solar cell technology
journal, July 2014

  • Vermang, Bart; Wätjen, Jörn Timo; Fjällström, Viktor
  • Progress in Photovoltaics: Research and Applications, Vol. 22, Issue 10
  • DOI: 10.1002/pip.2527

Optimization of CBD CdS process in high-efficiency Cu(In,Ga)Se2-based solar cells
journal, February 2002


High efficiency graded bandgap thin-film polycrystalline Cu(In,Ga) Se2-based solar cells
journal, June 1996


A one-dimensional Fickian model to predict the Ga depth profiles in three-stage Cu(In,Ga)Se 2
journal, May 2014

  • Rodriguez-Alvarez, H.; Mainz, R.; Sadewasser, S.
  • Journal of Applied Physics, Vol. 115, Issue 20
  • DOI: 10.1063/1.4880298

A new approach to high-efficiency solar cells by band gap grading in Cu(In,Ga)Se2 chalcopyrite semiconductors
journal, March 2001


Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin-film solar cells
journal, July 1999


Ion migration in chalcopyrite semiconductors
journal, December 1992

  • Dagan, Geula; Ciszek, T. F.; Cahen, David
  • The Journal of Physical Chemistry, Vol. 96, Issue 26
  • DOI: 10.1021/j100205a073

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.