skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tuning the Core–Shell Structure of Au 144@Fe 2O 3 for Optimal Catalytic Activity for CO Oxidation

Abstract

Core–shell heterostructures have been utilized as a catalyst that is thermally stable and exhibits a synergistic effect between core and shell, resulting in increased catalytic activity. We report on the synthetic procedure involving a Au 144 core with an iron oxide shell which can be varied in thickness. The Au 144@Fe 2O 3 particles with Au:Fe mass ratios of 1:2, 1:4, and 1:6 were synthesized and then deposited onto silica via colloidal deposition. Using CO oxidation, each Au 144@Fe 2O 3/SiO 2 catalyst gave varying degrees of full CO conversion depending on the thickness of the iron oxide layer. The 1:4 Au 144@Fe 2O 3/SiO 2 catalyst produced the best catalytic activity and was further investigated via thermal treatments, where calcination at 300 °C presented the best results, and the 1:4 ratio was still active at 100 °C after thermal treatments.

Authors:
 [1];  [1];  [2];  [3];  [3];  [3];  [4]
  1. Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry. Joint Inst. of Advanced Materials
  2. Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division
  4. Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry. Joint Inst. of Advanced Materials; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1479717
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Catalysis Letters
Additional Journal Information:
Journal Volume: 148; Journal Issue: 8; Journal ID: ISSN 1011-372X
Publisher:
Springer
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; catalysis; core-shell nanoparticles; Au144 nanocluster; CO oxidation; 2-propanol conversion; thermal treatment

Citation Formats

Lukosi, Michelle, Tian, Chengcheng, Li, Xinyi, Mahurin, Shannon M., Meyer, Harry M., Foo, Guo Shiou, and Dai, Sheng. Tuning the Core–Shell Structure of Au144@Fe2O3 for Optimal Catalytic Activity for CO Oxidation. United States: N. p., 2018. Web. doi:10.1007/s10562-018-2437-x.
Lukosi, Michelle, Tian, Chengcheng, Li, Xinyi, Mahurin, Shannon M., Meyer, Harry M., Foo, Guo Shiou, & Dai, Sheng. Tuning the Core–Shell Structure of Au144@Fe2O3 for Optimal Catalytic Activity for CO Oxidation. United States. doi:10.1007/s10562-018-2437-x.
Lukosi, Michelle, Tian, Chengcheng, Li, Xinyi, Mahurin, Shannon M., Meyer, Harry M., Foo, Guo Shiou, and Dai, Sheng. Sat . "Tuning the Core–Shell Structure of Au144@Fe2O3 for Optimal Catalytic Activity for CO Oxidation". United States. doi:10.1007/s10562-018-2437-x. https://www.osti.gov/servlets/purl/1479717.
@article{osti_1479717,
title = {Tuning the Core–Shell Structure of Au144@Fe2O3 for Optimal Catalytic Activity for CO Oxidation},
author = {Lukosi, Michelle and Tian, Chengcheng and Li, Xinyi and Mahurin, Shannon M. and Meyer, Harry M. and Foo, Guo Shiou and Dai, Sheng},
abstractNote = {Core–shell heterostructures have been utilized as a catalyst that is thermally stable and exhibits a synergistic effect between core and shell, resulting in increased catalytic activity. We report on the synthetic procedure involving a Au144 core with an iron oxide shell which can be varied in thickness. The Au144@Fe2O3 particles with Au:Fe mass ratios of 1:2, 1:4, and 1:6 were synthesized and then deposited onto silica via colloidal deposition. Using CO oxidation, each Au144@Fe2O3/SiO2 catalyst gave varying degrees of full CO conversion depending on the thickness of the iron oxide layer. The 1:4 Au144@Fe2O3/SiO2 catalyst produced the best catalytic activity and was further investigated via thermal treatments, where calcination at 300 °C presented the best results, and the 1:4 ratio was still active at 100 °C after thermal treatments.},
doi = {10.1007/s10562-018-2437-x},
journal = {Catalysis Letters},
number = 8,
volume = 148,
place = {United States},
year = {2018},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

One-step Synthesis of Core-Gold/Shell-Ceria Nanomaterial and Its Catalysis for Highly Selective Semihydrogenation of Alkynes
journal, October 2015

  • Mitsudome, Takato; Yamamoto, Masaaki; Maeno, Zen
  • Journal of the American Chemical Society, Vol. 137, Issue 42
  • DOI: 10.1021/jacs.5b07521

Bifunctional Au−Fe 3 O 4 Heterostructures for Magnetically Recyclable Catalysis of Nitrophenol Reduction
journal, March 2011

  • Lin, Fang-hsin; Doong, Ruey-an
  • The Journal of Physical Chemistry C, Vol. 115, Issue 14
  • DOI: 10.1021/jp110956k

STEM Electron Diffraction and High-Resolution Images Used in the Determination of the Crystal Structure of the Au 144 (SR) 60 Cluster
journal, March 2013

  • Bahena, Daniel; Bhattarai, Nabraj; Santiago, Ulises
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 6
  • DOI: 10.1021/jz400111d

Evaluation of the Au size effect: CO oxidation catalyzed by Au/TiO2
journal, July 2006


X-Ray photoelectron spectroscopy of iron–oxygen systems
journal, January 1974

  • Allen, Geoffrey C.; Curtis, Michael T.; Hooper, Alan J.
  • J. Chem. Soc., Dalton Trans., Issue 14
  • DOI: 10.1039/DT9740001525

Superparamagnetic Ag@Fe3O4 core–shell nanospheres: fabrication, characterization and application as reusable nanocatalysts
journal, January 2012

  • Jiang, Wanquan; Zhou, Yufeng; Zhang, Yanli
  • Dalton Transactions, Vol. 41, Issue 15
  • DOI: 10.1039/c2dt12307j

Quantum Sized Gold Nanoclusters with Atomic Precision
journal, June 2012

  • Qian, Huifeng; Zhu, Manzhou; Wu, Zhikun
  • Accounts of Chemical Research, Vol. 45, Issue 9
  • DOI: 10.1021/ar200331z

XPS characterization of Au/TiO2 catalysts: Binding energy assessment and irradiation effects
journal, January 2011


Platinum-Maghemite Core−Shell Nanoparticles Using a Sequential Synthesis
journal, February 2003

  • Teng, Xiaowei; Black, Donald; Watkins, Neil J.
  • Nano Letters, Vol. 3, Issue 2
  • DOI: 10.1021/nl025918y

Site-Specific and Size-Dependent Bonding of Compositionally Precise Gold−Thiolate Nanoparticles from X-ray Spectroscopy
journal, May 2010

  • MacDonald, Mark A.; Zhang, Peng; Qian, Huifeng
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 12
  • DOI: 10.1021/jz100547q

An XPS study of Au alloyed Al–O sputtered coatings
journal, April 2011


Gold catalysts supported on nanosized iron oxide for low-temperature oxidation of carbon monoxide and formaldehyde
journal, February 2016


Core/Shell Au/MnO Nanoparticles Prepared Through Controlled Oxidation of AuMn as an Electrocatalyst for Sensitive H 2 O 2 Detection
journal, August 2014


Yolk−Shell Catalyst of Single Au Nanoparticle Encapsulated within Hollow Mesoporous Silica Microspheres
journal, February 2011

  • Wang, Shengnan; Zhang, Minchao; Zhang, Wangqing
  • ACS Catalysis, Vol. 1, Issue 3
  • DOI: 10.1021/cs1000762

Chemically-synthesised, atomically-precise gold clusters deposited and activated on titania
journal, January 2013

  • Anderson, David P.; Alvino, Jason F.; Gentleman, Alexander
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 11
  • DOI: 10.1039/c3cp44005b

Geometric structure of the α-Fe2O3(001) surface: A LEED and XPS study
journal, July 1983


The effect of the metal to non-metal transition on the activity of gold catalysts
journal, January 2011


Spiers Memorial Lecture : Role of perimeter interfaces in catalysis by gold nanoparticles
journal, January 2011


Gold/Iron Oxide Core/Hollow-Shell Nanoparticles
journal, November 2008

  • Shevchenko, Elena V.; Bodnarchuk, Maryna I.; Kovalenko, Maksym V.
  • Advanced Materials, Vol. 20, Issue 22, p. 4323-4329
  • DOI: 10.1002/adma.200702994

Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds
journal, January 2004

  • Grosvenor, A. P.; Kobe, B. A.; Biesinger, M. C.
  • Surface and Interface Analysis, Vol. 36, Issue 12
  • DOI: 10.1002/sia.1984

Fast ozone detection by using a core–shell Au@TiO2 sensor at room temperature
journal, July 2015


Ubiquitous 8 and 29 kDa Gold:Alkanethiolate Cluster Compounds: Mass-Spectrometric Determination of Molecular Formulas and Structural Implications
journal, July 2008

  • Chaki, Nirmalya K.; Negishi, Yuichi; Tsunoyama, Hironori
  • Journal of the American Chemical Society, Vol. 130, Issue 27
  • DOI: 10.1021/ja8005379

Novel CeO2 yolk–shell structures loaded with tiny Au nanoparticles for superior catalytic reduction of p-nitrophenol
journal, January 2012

  • Fan, Cong-Min; Zhang, Lin-Fei; Wang, Sha-Sha
  • Nanoscale, Vol. 4, Issue 21
  • DOI: 10.1039/c2nr31713c

Size-dependent XPS spectra of small supported Au-clusters
journal, February 2013


Catalysis of Gold Nanoparticles Deposited on Metal Oxides
journal, January 2002


Facile synthesis of core–shell Au@CeO2 nanocomposites with remarkably enhanced catalytic activity for CO oxidation
journal, January 2012

  • Qi, Jian; Chen, Jie; Li, Guodong
  • Energy & Environmental Science, Vol. 5, Issue 10
  • DOI: 10.1039/c2ee22600f

Synthesis of thiolate-protected Au nanoparticles revisited: U-shape trend between the size of nanoparticles and thiol-to-Au ratio
journal, January 2016

  • Chen, Tiankai; Luo, Zhentao; Yao, Qiaofeng
  • Chemical Communications, Vol. 52, Issue 61
  • DOI: 10.1039/C6CC04433F

Recent progress on carbon-based support materials for electrocatalysts of direct methanol fuel cells
journal, January 2014


Controlled synthesis of Au–Fe heterodimer nanoparticles and their conversion into Au–Fe 3 O 4 heterostructured nanoparticles
journal, January 2016

  • Jiang, Guangming; Huang, Yuxi; Zhang, Sen
  • Nanoscale, Vol. 8, Issue 41
  • DOI: 10.1039/C6NR06395K

Exploring the atomic structure of 1.8 nm monolayer-protected gold clusters with aberration-corrected STEM
journal, May 2017


High-Temperature-Stable Catalysts by Hollow Sphere Encapsulation
journal, December 2006

  • Arnal, Pablo M.; Comotti, Massimiliano; Schüth, Ferdi
  • Angewandte Chemie, Vol. 118, Issue 48
  • DOI: 10.1002/ange.200603507

X-ray photoelectron spectroscopy of Au/Fe2O3 catalysts
journal, January 1999

  • Visco, A. M.; Neri, F.; Neri, G.
  • Physical Chemistry Chemical Physics, Vol. 1, Issue 11
  • DOI: 10.1039/a900838a

Ambient Synthesis of Au 144 (SR) 60 Nanoclusters in Methanol
journal, April 2011

  • Qian, Huifeng; Jin, Rongchao
  • Chemistry of Materials, Vol. 23, Issue 8
  • DOI: 10.1021/cm200143s

Au144−xPdx(SR)60 nanomolecules
journal, January 2013

  • Kothalawala, Nuwan; Kumara, Chanaka; Ferrando, Riccardo
  • Chemical Communications, Vol. 49, Issue 92
  • DOI: 10.1039/c3cc45669b

Information on quantum states pervades the visible spectrum of the ubiquitous Au144(SR)60 gold nanocluster
journal, April 2014

  • Weissker, H. -Ch.; Escobar, H. Barron; Thanthirige, V. D.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4785

Films of covalently bonded gold nanoparticles synthesized by a sol–gel process
journal, August 2012

  • dell’Erba, Ignacio E.; Hoppe, Cristina E.; Williams, Roberto J. J.
  • Journal of Nanoparticle Research, Vol. 14, Issue 9
  • DOI: 10.1007/s11051-012-1098-8

X-ray photoelectron spectroscopic studies of iron oxides
journal, September 1977

  • McIntyre, N. S.; Zetaruk, D. G.
  • Analytical Chemistry, Vol. 49, Issue 11
  • DOI: 10.1021/ac50019a016

Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0 °C
journal, February 1987

  • Haruta, Masatake; Kobayashi, Tetsuhiko; Sano, Hiroshi
  • Chemistry Letters, Vol. 16, Issue 2
  • DOI: 10.1246/cl.1987.405

Thiolate Ligands as a Double-Edged Sword for CO Oxidation on CeO 2 Supported Au 25 (SCH 2 CH 2 Ph) 18 Nanoclusters
journal, April 2014

  • Wu, Zili; Jiang, De-en; Mann, Amanda K. P.
  • Journal of the American Chemical Society, Vol. 136, Issue 16
  • DOI: 10.1021/ja5018706

Synthesis of Dumbbell-Shaped Au−Ag Core−Shell Nanorods by Seed-Mediated Growth under Alkaline Conditions
journal, July 2004

  • Huang, Chih-Ching; Yang, Zusing; Chang, Huan-Tsung
  • Langmuir, Vol. 20, Issue 15
  • DOI: 10.1021/la048791w

Optical recognition of CO and H2 by use of gas-sensitive Au–Co3O4 composite films
journal, January 1997

  • Ando, Masanori; Kobayashi, Tetsuhiko; Iijima, Sumio
  • Journal of Materials Chemistry, Vol. 7, Issue 9
  • DOI: 10.1039/a700125h

Engineering Catalytic Contacts and Thermal Stability: Gold/Iron Oxide Binary Nanocrystal Superlattices for CO Oxidation
journal, January 2013

  • Kang, Yijin; Ye, Xingchen; Chen, Jun
  • Journal of the American Chemical Society, Vol. 135, Issue 4
  • DOI: 10.1021/ja310427u

DRIFTS-QMS Study of Room Temperature CO Oxidation on Au/SiO 2 Catalyst: Nature and Role of Different Au Species
journal, February 2009

  • Wu, Zili; Zhou, Shenghu; Zhu, Haoguo
  • The Journal of Physical Chemistry C, Vol. 113, Issue 9
  • DOI: 10.1021/jp809220z

Polylysine-grafted Au 144 nanoclusters: birth and growth of a healthy surface-plasmon-resonance-like band
journal, January 2017

  • Guryanov, Ivan; Polo, Federico; Ubyvovk, Evgeniy V.
  • Chemical Science, Vol. 8, Issue 4
  • DOI: 10.1039/C6SC05187A

Synthesis of Monodispere Au@Co 3 O 4 Core-Shell Nanocrystals and Their Enhanced Catalytic Activity for Oxygen Evolution Reaction
journal, March 2014

  • Zhuang, Zhongbin; Sheng, Wenchao; Yan, Yushan
  • Advanced Materials, Vol. 26, Issue 23
  • DOI: 10.1002/adma.201400336

Highly active Au-CeO2@ZrO2 yolk–shell nanoreactors for the reduction of 4-nitrophenol to 4-aminophenol
journal, May 2015

  • Evangelista, Viridiana; Acosta, Brenda; Miridonov, Serguei
  • Applied Catalysis B: Environmental, Vol. 166-167
  • DOI: 10.1016/j.apcatb.2014.12.006

Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system
journal, January 1994

  • Brust, Mathias; Walker, Merryl; Bethell, Donald
  • J. Chem. Soc., Chem. Commun., Vol. 0, Issue 7
  • DOI: 10.1039/C39940000801

Yolk-Shell Gold Nanoparticles as Model Materials for Support-Effect Studies in Heterogeneous Catalysis: Au, @C and Au, @ZrO2 for CO Oxidation as an Example
journal, June 2011

  • Galeano, Carolina; Güttel, Robert; Paul, Michael
  • Chemistry - A European Journal, Vol. 17, Issue 30
  • DOI: 10.1002/chem.201100318

Size Focusing: A Methodology for Synthesizing Atomically Precise Gold Nanoclusters
journal, September 2010

  • Jin, Rongchao; Qian, Huifeng; Wu, Zhikun
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 19
  • DOI: 10.1021/jz100944k

Synthesis of Water-Soluble, Thiolate-Protected Gold Nanoparticles Uniform in Size
journal, April 2016


XPS study of oxides formed on the surface of high-purity iron exposed to air
journal, January 2000


Why Au and Cu Are More Selective Than Pt for Preferential Oxidation of CO at Low Temperature
journal, March 2004


Recovery of Transient Gain in an Open-Cycle FAF CO 2 Laser Amplifier Using Gold Catalyst
journal, June 1990

  • Tsuchida, Eiichi; Sato, Heihachi
  • Japanese Journal of Applied Physics, Vol. 29, Issue Part 2, No. 6
  • DOI: 10.1143/JJAP.29.L964