skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Coordination-supported organic polymers: mesoporous inorganic–organic materials with preferred stability

Abstract

Here, a simple and versatile strategy, borrowing ideas from the chemistry of MOFs and COFs, is developed for the synthesis of coordination-supported organic polymers (COPs) via coordination between Al 3+ and 5-amino-8-hydroxyquinoline together with organic imine- or imide-based polycondensation. The COPs with high surface areas (up to 1123 m 2 g -1) and abundant mesopores (2.5 nm or 14 nm) possess good crystalline and porous structure after being soaked in boiling water.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3];  [4];  [3]; ORCiD logo [4]; ORCiD logo [4]; ORCiD logo [5]
  1. Shanghai Jiao Tong Univ. (China). School of Chemistry and Chemical Engineering
  2. Shanghai Jiao Tong Univ. (China). School of Chemistry and Chemical Engineering; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division
  3. Jilin Univ., Changchun (China). State Key Lab. of Inorganic Synthesis and Preparative Chemistry
  4. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division
  5. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Chemical Sciences Division; Univ. of Tennessee, Knoxville, TN (United States). Dept. of Chemistry
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shanghai Jiao Tong Univ. (China)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22); Shanghai Pujiang Program (China); Young Thousand Talented Program (China); National Natural Science Foundation of China (NNSFC)
OSTI Identifier:
1479716
Alternate Identifier(s):
OSTI ID: 1441042
Grant/Contract Number:  
AC05-00OR22725; 17PJ1403500; 21776174
Resource Type:
Accepted Manuscript
Journal Name:
Inorganic Chemistry Frontiers (Online)
Additional Journal Information:
Journal Name: Inorganic Chemistry Frontiers (Online); Journal Volume: 5; Journal Issue: 8; Journal ID: ISSN 2052-1553
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Chen, Dong, Zhang, Pengfei, Fang, Qianrong, Wan, Shun, Li, Hui, Yang, Shize, Huang, Caili, and Dai, Sheng. Coordination-supported organic polymers: mesoporous inorganic–organic materials with preferred stability. United States: N. p., 2018. Web. doi:10.1039/c8qi00471d.
Chen, Dong, Zhang, Pengfei, Fang, Qianrong, Wan, Shun, Li, Hui, Yang, Shize, Huang, Caili, & Dai, Sheng. Coordination-supported organic polymers: mesoporous inorganic–organic materials with preferred stability. United States. doi:10.1039/c8qi00471d.
Chen, Dong, Zhang, Pengfei, Fang, Qianrong, Wan, Shun, Li, Hui, Yang, Shize, Huang, Caili, and Dai, Sheng. Tue . "Coordination-supported organic polymers: mesoporous inorganic–organic materials with preferred stability". United States. doi:10.1039/c8qi00471d. https://www.osti.gov/servlets/purl/1479716.
@article{osti_1479716,
title = {Coordination-supported organic polymers: mesoporous inorganic–organic materials with preferred stability},
author = {Chen, Dong and Zhang, Pengfei and Fang, Qianrong and Wan, Shun and Li, Hui and Yang, Shize and Huang, Caili and Dai, Sheng},
abstractNote = {Here, a simple and versatile strategy, borrowing ideas from the chemistry of MOFs and COFs, is developed for the synthesis of coordination-supported organic polymers (COPs) via coordination between Al3+ and 5-amino-8-hydroxyquinoline together with organic imine- or imide-based polycondensation. The COPs with high surface areas (up to 1123 m2 g-1) and abundant mesopores (2.5 nm or 14 nm) possess good crystalline and porous structure after being soaked in boiling water.},
doi = {10.1039/c8qi00471d},
journal = {Inorganic Chemistry Frontiers (Online)},
number = 8,
volume = 5,
place = {United States},
year = {2018},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Figures / Tables:

Figure 1 Figure 1: Three classes of building blocks proposed for the design of porous organic materials. Type I: Organic Ligand for metal-organic framework. Type II: Organic Linker for porous polymer via covalent bonding formation Type III: Hybrid building block with both coordination point and covalent linkable group.

Save / Share:

Works referenced in this record:

A homochiral metal–organic porous material for enantioselective separation and catalysis
journal, April 2000

  • Seo, Jung Soo; Whang, Dongmok; Lee, Hyoyoung
  • Nature, Vol. 404, Issue 6781, p. 982-986
  • DOI: 10.1038/35010088

A Titanium–Organic Framework as an Exemplar of Combining the Chemistry of Metal– and Covalent–Organic Frameworks
journal, March 2016

  • Nguyen, Ha L.; Gándara, Felipe; Furukawa, Hiroyasu
  • Journal of the American Chemical Society, Vol. 138, Issue 13
  • DOI: 10.1021/jacs.6b01233

A Water-Stable Metal–Organic Framework for Highly Sensitive and Selective Sensing of Fe 3+ Ion
journal, September 2016


Design and Preparation of Porous Polymers
journal, April 2012

  • Wu, Dingcai; Xu, Fei; Sun, Bin
  • Chemical Reviews, Vol. 112, Issue 7
  • DOI: 10.1021/cr200440z

Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal–organic framework nanocrystals
journal, April 2016

  • Bachman, Jonathan E.; Smith, Zachary P.; Li, Tao
  • Nature Materials, Vol. 15, Issue 8
  • DOI: 10.1038/nmat4621

Catalyst-free Preparation of Melamine-Based Microporous Polymer Networks through Schiff Base Chemistry
journal, June 2009

  • Schwab, Matthias Georg; Fassbender, Birgit; Spiess, Hans Wolfgang
  • Journal of the American Chemical Society, Vol. 131, Issue 21
  • DOI: 10.1021/ja902116f

Functional Mixed Metal-Organic Frameworks with Metalloligands
journal, September 2011

  • Das, Madhab C.; Xiang, Shengchang; Zhang, Zhangjing
  • Angewandte Chemie International Edition, Vol. 50, Issue 45
  • DOI: 10.1002/anie.201101534

Coordination polymers of 5-substituted isophthalic acid
journal, January 2016

  • McCormick, Laura J.; Morris, Samuel A.; Slawin, Alexandra M. Z.
  • CrystEngComm, Vol. 18, Issue 7
  • DOI: 10.1039/C5CE02091C

Water-Stable Metal–Organic Framework/Polymer Composites Compatible with Human Hepatocytes
journal, July 2016

  • Neufeld, Megan J.; Ware, Brenton R.; Lutzke, Alec
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 30
  • DOI: 10.1021/acsami.6b05948

Metal–Organic Frameworks as Efficient Materials for Drug Delivery
journal, September 2006

  • Horcajada, Patricia; Serre, Christian; Vallet-Regí, María
  • Angewandte Chemie International Edition, Vol. 45, Issue 36, p. 5974-5978
  • DOI: 10.1002/anie.200601878

Sorting of C 4 Olefins with Interpenetrated Hybrid Ultramicroporous Materials by Combining Molecular Recognition and Size-Sieving
journal, October 2017


Configuration-Specific Synthesis of the Facial and Meridional Isomers of Tris(8-hydroxyquinolinate)aluminum (Alq 3 )
journal, July 2006

  • Katakura, Ryo; Koide, Yoshihiro
  • Inorganic Chemistry, Vol. 45, Issue 15
  • DOI: 10.1021/ic060594s

Highly Stable Porous Polymer Networks with Exceptionally High Gas-Uptake Capacities
journal, July 2011


Advancing polymers of intrinsic microporosity by mechanochemistry
journal, January 2015

  • Zhang, Pengfei; Jiang, Xueguang; Wan, Shun
  • Journal of Materials Chemistry A, Vol. 3, Issue 13
  • DOI: 10.1039/C4TA07196D

Gas-induced transformation and expansion of a non-porous organic solid
journal, January 2008

  • Thallapally, Praveen K.; Peter McGrail, B.; Dalgarno, Scott J.
  • Nature Materials, Vol. 7, Issue 2
  • DOI: 10.1038/nmat2097

Modulating Adsorption and Stability Properties in Pillared Metal–Organic Frameworks: A Model System for Understanding Ligand Effects
journal, October 2015


Defect Engineering: Tuning the Porosity and Composition of the Metal–Organic Framework UiO-66 via Modulated Synthesis
journal, May 2016


Efficient metal-free oxidation of ethylbenzene with molecular oxygen utilizing the synergistic combination of NHPI analogues
journal, June 2015


Porous covalent–organic materials: synthesis, clean energy application and design
journal, January 2013


Porous, Crystalline, Covalent Organic Frameworks
journal, November 2005

  • Côté, Adrien P.; Benin, Annabelle I.; Ockwig, Nathan W.
  • Science, Vol. 310, Issue 5751, p. 1166-1170
  • DOI: 10.1126/science.1120411

Weaving of organic threads into a crystalline covalent organic framework
journal, January 2016


l -Arginine-Triggered Self-Assembly of CeO 2 Nanosheaths on Palladium Nanoparticles in Water
journal, March 2016

  • Wang, Xiao; Zhang, Yibo; Song, Shuyan
  • Angewandte Chemie International Edition, Vol. 55, Issue 14
  • DOI: 10.1002/anie.201600625

A Series of Highly Stable Mesoporous Metalloporphyrin Fe-MOFs
journal, August 2014

  • Wang, Kecheng; Feng, Dawei; Liu, Tian-Fu
  • Journal of the American Chemical Society, Vol. 136, Issue 40
  • DOI: 10.1021/ja507269n

Anionic silicate organic frameworks constructed from hexacoordinate silicon centres
journal, May 2017

  • Roeser, Jérôme; Prill, Dragica; Bojdys, Michael J.
  • Nature Chemistry, Vol. 9, Issue 10
  • DOI: 10.1038/nchem.2771

Preparation, properties, and applications of 8-hydroxyquinoline immobilized chelate
journal, April 1974

  • Sugawara, K. F.; Weetall, H. H.; Schucker, G. D.
  • Analytical Chemistry, Vol. 46, Issue 4
  • DOI: 10.1021/ac60340a016

Scintillating Metal-Organic Frameworks: A New Class of Radiation Detection Materials
journal, January 2009

  • Doty, F. P.; Bauer, C. A.; Skulan, A. J.
  • Advanced Materials, Vol. 21, Issue 1, p. 95-101
  • DOI: 10.1002/adma.200801753

A Redox-Active Bistable Molecular Switch Mounted inside a Metal–Organic Framework
journal, October 2016

  • Chen, Qishui; Sun, Junling; Li, Peng
  • Journal of the American Chemical Society, Vol. 138, Issue 43
  • DOI: 10.1021/jacs.6b09880

Functional porous organic polymers for heterogeneous catalysis
journal, January 2012

  • Zhang, Yugen; Riduan, Siti Nurhanna
  • Chem. Soc. Rev., Vol. 41, Issue 6
  • DOI: 10.1039/C1CS15227K

A Water-Stable Porphyrin-Based Metal-Organic Framework Active for Visible-Light Photocatalysis
journal, June 2012

  • Fateeva, Alexandra; Chater, Philip A.; Ireland, Christopher P.
  • Angewandte Chemie International Edition, Vol. 51, Issue 30
  • DOI: 10.1002/anie.201202471

Synthesis and characterization of tris-(5-amino-8-hydroxyquinoline)aluminum complexes and their use as anode buffer layers in inverted organic solar cells
journal, January 2012

  • Manninen, Venla M.; Omar, Walaa A. E.; Heiskanen, Juha P.
  • Journal of Materials Chemistry, Vol. 22, Issue 43
  • DOI: 10.1039/c2jm35292c

Porous organic molecular materials
journal, January 2012

  • Tian, Jian; Thallapally, Praveen K.; McGrail, B. Peter
  • CrystEngComm, Vol. 14, Issue 6
  • DOI: 10.1039/c2ce06457j

Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage
journal, January 2006

  • McKeown, Neil B.; Budd, Peter M.
  • Chemical Society Reviews, Vol. 35, Issue 8, p. 675-683
  • DOI: 10.1039/b600349d

Synthetic Control of the Pore Dimension and Surface Area in Conjugated Microporous Polymer and Copolymer Networks
journal, June 2008

  • Jiang, Jia-Xing; Su, Fabing; Trewin, Abbie
  • Journal of the American Chemical Society, Vol. 130, Issue 24
  • DOI: 10.1021/ja8010176

Targeted Synthesis of a Porous Aromatic Framework with High Stability and Exceptionally High Surface Area
journal, November 2009

  • Ben, Teng; Ren, Hao; Ma, Shengqian
  • Angewandte Chemie International Edition, Vol. 48, Issue 50, p. 9457-9460
  • DOI: 10.1002/anie.200904637

Soluble Porous Coordination Polymers by Mechanochemistry: From Metal-Containing Films/Membranes to Active Catalysts for Aerobic Oxidation
journal, November 2014

  • Zhang, Pengfei; Li, Haiying; Veith, Gabriel M.
  • Advanced Materials, Vol. 27, Issue 2
  • DOI: 10.1002/adma.201403299

Crystalline coordination framework endowed with dynamic gate-opening behaviour by being downsized to a thin film
journal, March 2016

  • Sakaida, Shun; Otsubo, Kazuya; Sakata, Osami
  • Nature Chemistry, Vol. 8, Issue 4
  • DOI: 10.1038/nchem.2469

Porous Organic Polymers in Catalysis Opportunities and Challenges
journal, May 2011

  • Kaur, Parminder; Hupp, Joseph T.; Nguyen, SonBinh T.
  • ACS Catalysis, Vol. 1, Issue 7, p. 819-835
  • DOI: 10.1021/cs200131g

Porous, Covalent Triazine-Based Frameworks Prepared by Ionothermal Synthesis
journal, April 2008

  • Kuhn, Pierre; Antonietti, Markus; Thomas, Arne
  • Angewandte Chemie International Edition, Vol. 47, Issue 18
  • DOI: 10.1002/anie.200705710

Recent Development of Hypercrosslinked Microporous Organic Polymers
journal, January 2013

  • Xu, Shujun; Luo, Yali; Tan, Bien
  • Macromolecular Rapid Communications, Vol. 34, Issue 6
  • DOI: 10.1002/marc.201200788

An Adaptable Peptide-Based Porous Material
journal, August 2010


Anionic porous organic frameworks as advanced functional adsorbents for CO 2 and organic micropollutants in water
journal, January 2017

  • Liu, Yiqun; Landskron, Kai
  • Journal of Materials Chemistry A, Vol. 5, Issue 45
  • DOI: 10.1039/C7TA07249J

Water Stability and Adsorption in Metal–Organic Frameworks
journal, September 2014

  • Burtch, Nicholas C.; Jasuja, Himanshu; Walton, Krista S.
  • Chemical Reviews, Vol. 114, Issue 20, p. 10575-10612
  • DOI: 10.1021/cr5002589

Water Adsorption in Porous Metal–Organic Frameworks and Related Materials
journal, March 2014

  • Furukawa, Hiroyasu; Gándara, Felipe; Zhang, Yue-Biao
  • Journal of the American Chemical Society, Vol. 136, Issue 11, p. 4369-4381
  • DOI: 10.1021/ja500330a

Hard Templates for Soft Materials: Creating Nanostructured Organic Materials
journal, February 2008

  • Thomas, Arne; Goettmann, Frederic; Antonietti, Markus
  • Chemistry of Materials, Vol. 20, Issue 3
  • DOI: 10.1021/cm702126j

Porous organic molecules
journal, October 2010

  • Holst, James R.; Trewin, Abbie; Cooper, Andrew I.
  • Nature Chemistry, Vol. 2, Issue 11
  • DOI: 10.1038/nchem.873

Covalent organic frameworks
journal, January 2012

  • Feng, Xiao; Ding, Xuesong; Jiang, Donglin
  • Chemical Society Reviews, Vol. 41, Issue 18
  • DOI: 10.1039/c2cs35157a

Ultraporous, Water Stable, and Breathing Zirconium-Based Metal–Organic Frameworks with ftw Topology
journal, September 2015

  • Deria, Pravas; Gómez-Gualdrón, Diego A.; Bury, Wojciech
  • Journal of the American Chemical Society, Vol. 137, Issue 40
  • DOI: 10.1021/jacs.5b08860

Emerging Multifunctional Metal-Organic Framework Materials
journal, July 2016


Metal–Organic Framework Nodes Support Single-Site Magnesium–Alkyl Catalysts for Hydroboration and Hydroamination Reactions
journal, June 2016

  • Manna, Kuntal; Ji, Pengfei; Greene, Francis X.
  • Journal of the American Chemical Society, Vol. 138, Issue 24
  • DOI: 10.1021/jacs.6b03689

Thiophene-based covalent organic frameworks
journal, March 2013

  • Bertrand, G. H. V.; Michaelis, V. K.; Ong, T. -C.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 13
  • DOI: 10.1073/pnas.1221824110

Microporous Polycarbazole with High Specific Surface Area for Gas Storage and Separation
journal, March 2012

  • Chen, Qi; Luo, Min; Hammershøj, Peter
  • Journal of the American Chemical Society, Vol. 134, Issue 14
  • DOI: 10.1021/ja300438w

Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene
journal, May 2016


Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation
journal, February 2013

  • Nugent, Patrick; Belmabkhout, Youssef; Burd, Stephen D.
  • Nature, Vol. 495, Issue 7439, p. 80-84
  • DOI: 10.1038/nature11893

Assembly of Metal–Organic Frameworks (MOFs) Based on Indium-Trimer Building Blocks: A Porous MOF with soc Topology and High Hydrogen Storage
journal, April 2007

  • Liu, Yunling; Eubank, Jarrod F.; Cairns, Amy J.
  • Angewandte Chemie, Vol. 119, Issue 18
  • DOI: 10.1002/ange.200604306

Porous Polymer Networks: Synthesis, Porosity, and Applications in Gas Storage/Separation
journal, November 2010

  • Lu, Weigang; Yuan, Daqiang; Zhao, Dan
  • Chemistry of Materials, Vol. 22, Issue 21, p. 5964-5972
  • DOI: 10.1021/cm1021068

The Chemistry and Applications of Metal-Organic Frameworks
journal, August 2013

  • Furukawa, H.; Cordova, K. E.; O'Keeffe, M.
  • Science, Vol. 341, Issue 6149, p. 1230444-1230444
  • DOI: 10.1126/science.1230444

Mechanical Tunability via Hydrogen Bonding in Metal–Organic Frameworks with the Perovskite Architecture
journal, May 2014

  • Li, Wei; Thirumurugan, A.; Barton, Phillip T.
  • Journal of the American Chemical Society, Vol. 136, Issue 22
  • DOI: 10.1021/ja500618z

Designed synthesis of large-pore crystalline polyimide covalent organic frameworks
journal, July 2014

  • Fang, Qianrong; Zhuang, Zhongbin; Gu, Shuang
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5503

Anhydrous proton conduction at 150 °C in a crystalline metal–organic framework
journal, October 2009

  • Hurd, Jeff A.; Vaidhyanathan, Ramanathan; Thangadurai, Venkataraman
  • Nature Chemistry, Vol. 1, Issue 9
  • DOI: 10.1038/nchem.402

    Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.