skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High Energy Density CNT/NaI Composite Cathodes for Sodium-Ion Batteries

Abstract

The Na-iodine system has potential as a positive electrode in sodium-ion batteries due to its fast reaction kinetics and high energy density. Here, the fabrication of a NaI-loaded carbon nanotube (CNT) mat cathode is presented and the use of NaI as a Na-ion battery cathode is reported for the first time. Freestanding electrodes show a capacity retention of 92% after 100 cycles at 100 mA h g -1 and a high specific energy density (≈473 W h kg -1, second discharge basis vs Na metal) and small hysteresis (0.03 V). Adding a CNT mat interlayer between the NaI composite cathode and the separator, and fluoroethylene carbonate to the electrolyte significantly suppresses shuttling of active materials during cycling. Using ex situ X-ray photoelectron spectroscopy and Raman data, an understanding of the relevant processes occurring during cycling of the CNT/NaI cathode is developed.

Authors:
 [1];  [1];  [2];  [3];  [2];  [2]; ORCiD logo [1]
  1. Univ. of Illinois at Urbana-Champaign, IL (United States). Frederick Seitz Materials Research Lab., Beckman Inst.
  2. Univ. of Illinois at Urbana-Champaign, IL (United States). Frederick Seitz Materials Research Lab.
  3. Kangwon National Univ., Samcheok (South Korea)
Publication Date:
Research Org.:
Univ. of Illinois at Urbana-Champaign, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division; Kwanjeong Educational Foundation
OSTI Identifier:
1479522
Grant/Contract Number:  
FG02-07ER46471
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Advanced Materials Interfaces
Additional Journal Information:
Journal Name: Advanced Materials Interfaces Journal Volume: 5 Journal Issue: 23; Journal ID: ISSN 2196-7350
Publisher:
Wiley-VCH
Country of Publication:
Germany
Language:
English
Subject:
25 ENERGY STORAGE; Na-ion batteries; carbon nanotubes; high energy density cathodes; shuttling; sodium iodide

Citation Formats

Kim, Sanghyeon, Li, Xiangming, Sang, Lingzi, Yun, Young Soo, Nuzzo, Ralph G., Gewirth, Andrew A., and Braun, Paul V. High Energy Density CNT/NaI Composite Cathodes for Sodium-Ion Batteries. Germany: N. p., 2018. Web. doi:10.1002/admi.201801342.
Kim, Sanghyeon, Li, Xiangming, Sang, Lingzi, Yun, Young Soo, Nuzzo, Ralph G., Gewirth, Andrew A., & Braun, Paul V. High Energy Density CNT/NaI Composite Cathodes for Sodium-Ion Batteries. Germany. doi:10.1002/admi.201801342.
Kim, Sanghyeon, Li, Xiangming, Sang, Lingzi, Yun, Young Soo, Nuzzo, Ralph G., Gewirth, Andrew A., and Braun, Paul V. Mon . "High Energy Density CNT/NaI Composite Cathodes for Sodium-Ion Batteries". Germany. doi:10.1002/admi.201801342.
@article{osti_1479522,
title = {High Energy Density CNT/NaI Composite Cathodes for Sodium-Ion Batteries},
author = {Kim, Sanghyeon and Li, Xiangming and Sang, Lingzi and Yun, Young Soo and Nuzzo, Ralph G. and Gewirth, Andrew A. and Braun, Paul V.},
abstractNote = {The Na-iodine system has potential as a positive electrode in sodium-ion batteries due to its fast reaction kinetics and high energy density. Here, the fabrication of a NaI-loaded carbon nanotube (CNT) mat cathode is presented and the use of NaI as a Na-ion battery cathode is reported for the first time. Freestanding electrodes show a capacity retention of 92% after 100 cycles at 100 mA h g-1 and a high specific energy density (≈473 W h kg-1, second discharge basis vs Na metal) and small hysteresis (0.03 V). Adding a CNT mat interlayer between the NaI composite cathode and the separator, and fluoroethylene carbonate to the electrolyte significantly suppresses shuttling of active materials during cycling. Using ex situ X-ray photoelectron spectroscopy and Raman data, an understanding of the relevant processes occurring during cycling of the CNT/NaI cathode is developed.},
doi = {10.1002/admi.201801342},
journal = {Advanced Materials Interfaces},
number = 23,
volume = 5,
place = {Germany},
year = {2018},
month = {8}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1002/admi.201801342

Save / Share:

Works referenced in this record:

Reduced graphene oxide film as a shuttle-inhibiting interlayer in a lithium–sulfur battery
journal, November 2013


Advanced asymmetric supercapacitors based on CNT@Ni(OH) 2 core–shell composites and 3D graphene networks
journal, January 2015

  • Yi, Huan; Wang, Huanwen; Jing, Yuting
  • Journal of Materials Chemistry A, Vol. 3, Issue 38
  • DOI: 10.1039/C5TA06174A

Fluorinated Ethylene Carbonate as Electrolyte Additive for Rechargeable Na Batteries
journal, October 2011

  • Komaba, Shinichi; Ishikawa, Toru; Yabuuchi, Naoaki
  • ACS Applied Materials & Interfaces, Vol. 3, Issue 11
  • DOI: 10.1021/am200973k

Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard-Carbon Electrodes and Application to Na-Ion Batteries
journal, August 2011

  • Komaba, Shinichi; Murata, Wataru; Ishikawa, Toru
  • Advanced Functional Materials, Vol. 21, Issue 20
  • DOI: 10.1002/adfm.201100854

Electrospun P2-type Na 2/3 (Fe 1/2 Mn 1/2 )O 2 Hierarchical Nanofibers as Cathode Material for Sodium-Ion Batteries
journal, June 2014

  • Kalluri, Sujith; Seng, Kuok Hau; Pang, Wei Kong
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 12
  • DOI: 10.1021/am502343s

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Work Function Tunable Titanium Carbonitride Nanostructures for High-Efficiency, Rechargeable Li-Iodine Batteries
journal, May 2017

  • Anju, V. G.; Austeria, Muthu P.; Sampath, S.
  • Advanced Materials Interfaces, Vol. 4, Issue 15
  • DOI: 10.1002/admi.201700151

An XPS investigation of the influence of bromide and iodide solutions on the surface of silver chloride coated ion-selective electrodes
journal, April 1991


Rechargeable lithium/iodine battery with superior high-rate capability by using iodine–carbon composite as cathode
journal, January 2011

  • Wang, Y. L.; Sun, Q. L.; Zhao, Q. Q.
  • Energy & Environmental Science, Vol. 4, Issue 10
  • DOI: 10.1039/c1ee01875b

Reduced Graphene Oxide/LiI Composite Lithium Ion Battery Cathodes
journal, October 2017


High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance
journal, April 2013

  • Augustyn, Veronica; Come, Jérémy; Lowe, Michael A.
  • Nature Materials, Vol. 12, Issue 6
  • DOI: 10.1038/nmat3601

Charge carriers in rechargeable batteries: Na ions vs. Li ions
journal, January 2013

  • Hong, Sung You; Kim, Youngjin; Park, Yuwon
  • Energy & Environmental Science, Vol. 6, Issue 7
  • DOI: 10.1039/c3ee40811f

Superior Cathode of Sodium-Ion Batteries: Orthorhombic V 2 O 5 Nanoparticles Generated in Nanoporous Carbon by Ambient Hydrolysis Deposition
journal, June 2014

  • Raju, Vadivukarasi; Rains, Jordan; Gates, Cooper
  • Nano Letters, Vol. 14, Issue 7
  • DOI: 10.1021/nl501692p

Effect of Fluoroethylene Carbonate on Electrochemical Performances of Lithium Electrodes and Lithium-Sulfur Batteries
journal, January 2013

  • Song, Ju-Hye; Yeon, Jin-Tak; Jang, Jun-Yeong
  • Journal of The Electrochemical Society, Vol. 160, Issue 6
  • DOI: 10.1149/2.101306jes

Raman spectrum of propylene carbonate
journal, January 1979

  • Janz, G. J.; Ambrose, J.; Coutts, J. W.
  • Spectrochimica Acta Part A: Molecular Spectroscopy, Vol. 35, Issue 2
  • DOI: 10.1016/0584-8539(79)80181-6

High-Energy/Power and Low-Temperature Cathode for Sodium-Ion Batteries: In Situ XRD Study and Superior Full-Cell Performance
journal, June 2017

  • Guo, Jin-Zhi; Wang, Peng-Fei; Wu, Xing-Long
  • Advanced Materials, Vol. 29, Issue 33
  • DOI: 10.1002/adma.201701968

Electrochemical Properties of Monoclinic NaNiO 2
journal, November 2012

  • Vassilaras, Plousia; Ma, Xiaohua; Li, Xin
  • Journal of The Electrochemical Society, Vol. 160, Issue 2
  • DOI: 10.1149/2.023302jes

Electrochemical Performance of Porous Carbon/Tin Composite Anodes for Sodium-Ion and Lithium-Ion Batteries
journal, September 2012


Rechargeable Lithium-Iodine Batteries with Iodine/Nanoporous Carbon Cathode
journal, August 2015


Solvent Effects in the Raman Spectra of the Triiodide Ion:  Observation of Dynamic Symmetry Breaking and Solvent Degrees of Freedom
journal, January 1996

  • Johnson, Alan E.; Myers, Anne B.
  • The Journal of Physical Chemistry, Vol. 100, Issue 19
  • DOI: 10.1021/jp953052x

Synthesis and electrode performance of carbon coated Na2FePO4F for rechargeable Na batteries
journal, November 2011

  • Kawabe, Yoshiteru; Yabuuchi, Naoaki; Kajiyama, Masataka
  • Electrochemistry Communications, Vol. 13, Issue 11
  • DOI: 10.1016/j.elecom.2011.08.038

An Iodine Quantum Dots Based Rechargeable Sodium-Iodine Battery
journal, October 2016


The First Report on Excellent Cycling Stability and Superior Rate Capability of Na 3 V 2 (PO 4 ) 3 for Sodium Ion Batteries
journal, November 2012

  • Saravanan, Kuppan; Mason, Chad W.; Rudola, Ashish
  • Advanced Energy Materials, Vol. 3, Issue 4
  • DOI: 10.1002/aenm.201200803

A rechargeable iodine-carbon battery that exploits ion intercalation and iodine redox chemistry
journal, September 2017


Li 2 S-Carbon Sandwiched Electrodes with Superior Performance for Lithium-Sulfur Batteries
journal, August 2013

  • Fu, Yongzhu; Su, Yu-Sheng; Manthiram, Arumugam
  • Advanced Energy Materials, Vol. 4, Issue 1
  • DOI: 10.1002/aenm.201300655

Anchoring Iodine to N-Doped Hollow Carbon Fold-Hemisphere: Toward a Fast and Stable Cathode for Rechargeable Lithium–Iodine Batteries
journal, June 2017

  • Li, Kaidi; Lin, Bo; Li, Qiufeng
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 24
  • DOI: 10.1021/acsami.7b02943

Evolution of Strategies for Modern Rechargeable Batteries
journal, June 2012

  • Goodenough, John B.
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar2002705

In situ Raman investigation of electrolyte solutions in the vicinity of graphite negative electrodes
journal, January 2016

  • Song, Hee-Youb; Fukutsuka, Tomokazu; Miyazaki, Kohei
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 39
  • DOI: 10.1039/C6CP05489G

High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries
journal, January 2014

  • You, Ya; Wu, Xing-Long; Yin, Ya-Xia
  • Energy Environ. Sci., Vol. 7, Issue 5
  • DOI: 10.1039/C3EE44004D

Electrospun Sb/C Fibers for a Stable and Fast Sodium-Ion Battery Anode
journal, June 2013

  • Zhu, Yujie; Han, Xiaogang; Xu, Yunhua
  • ACS Nano, Vol. 7, Issue 7
  • DOI: 10.1021/nn4025674

Investigation of the capacity decay of a CdO–NaI mixed sorbent for pre-combustion CO 2 capture
journal, January 2015

  • Vogt, Christian; Gengenbach, Thomas R.; Chang, Shery L. Y.
  • Journal of Materials Chemistry A, Vol. 3, Issue 9
  • DOI: 10.1039/C4TA07085B

Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer
journal, January 2012

  • Su, Yu-Sheng; Manthiram, Arumugam
  • Nature Communications, Vol. 3, Article No. 1166
  • DOI: 10.1038/ncomms2163

High Capacity and Rate Capability of Amorphous Phosphorus for Sodium Ion Batteries
journal, March 2013

  • Qian, Jiangfeng; Wu, Xianyong; Cao, Yuliang
  • Angewandte Chemie, Vol. 125, Issue 17
  • DOI: 10.1002/ange.201209689

Facile Synthesis of Nanorod-like Single Crystalline Na 0.44 MnO 2 for High Performance Sodium-Ion Batteries
journal, January 2015

  • Zhan, Pan; Wang, Shuai; Yuan, Yan
  • Journal of The Electrochemical Society, Vol. 162, Issue 6
  • DOI: 10.1149/2.0891506jes

Electrospun NaVPO 4 F/C Nanofibers as Self-Standing Cathode Material for Ultralong Cycle Life Na-Ion Batteries
journal, April 2017


RedOx-controlled sorption of iodine anions by hydrotalcite composites
journal, January 2016

  • Levitskaia, Tatiana G.; Chatterjee, Sayandev; Arey, Bruce W.
  • RSC Advances, Vol. 6, Issue 79
  • DOI: 10.1039/C6RA13092E

Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors
journal, January 2010

  • Brezesinski, Torsten; Wang, John; Tolbert, Sarah H.
  • Nature Materials, Vol. 9, Issue 2
  • DOI: 10.1038/nmat2612

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

In Situ Resonance Raman Microspectroscopy of a Solid-State Dye-Sensitized Photoelectrochemical Cell
journal, January 2002

  • Štangar, U. Lavrenčič; Orel, B.; Vuk, A. Šurca
  • Journal of The Electrochemical Society, Vol. 149, Issue 11
  • DOI: 10.1149/1.1509071

Recent Progress in Electrode Materials for Sodium-Ion Batteries
journal, July 2016

  • Kim, Hyungsub; Kim, Haegyeom; Ding, Zhang
  • Advanced Energy Materials, Vol. 6, Issue 19
  • DOI: 10.1002/aenm.201600943

Reversible NaFePO4 electrode for sodium secondary batteries
journal, August 2012


Sodium-Ion Batteries
journal, May 2012

  • Slater, Michael D.; Kim, Donghan; Lee, Eungje
  • Advanced Functional Materials, Vol. 23, Issue 8, p. 947-958
  • DOI: 10.1002/adfm.201200691

NaCrO 2 cathode for high-rate sodium-ion batteries
journal, January 2015

  • Yu, Chan-Yeop; Park, Jae-Sang; Jung, Hun-Gi
  • Energy & Environmental Science, Vol. 8, Issue 7
  • DOI: 10.1039/C5EE00695C

Hydrothermal synthesis of MnO2/CNT nanocomposite with a CNT core/porous MnO2 sheath hierarchy architecture for supercapacitors
journal, January 2012


A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries
journal, February 2013

  • Suo, Liumin; Hu, Yong-Sheng; Li, Hong
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2513

A Honeycomb-Layered Na 3 Ni 2 SbO 6 : A High-Rate and Cycle-Stable Cathode for Sodium-Ion Batteries
journal, July 2014


Controlling SEI Formation on SnSb-Porous Carbon Nanofibers for Improved Na Ion Storage
journal, February 2014


LiI embedded meso-micro porous carbon polyhedrons for lithium iodine battery with superior lithium storage properties
journal, January 2018


Sulfur-Infiltrated Micro- and Mesoporous Silicon Carbide-Derived Carbon Cathode for High-Performance Lithium Sulfur Batteries
journal, June 2013

  • Lee, Jung Tae; Zhao, Youyang; Thieme, Sören
  • Advanced Materials, Vol. 25, Issue 33
  • DOI: 10.1002/adma.201301579