Tunnel diode resonator for precision magnetic susceptibility measurements in a mK temperature range and large DC magnetic fields
- Ames Lab. and Iowa State Univ., Ames, IA (United States); Univ. of Maryland, College Park, MD (United States)
- Ames Lab. and Iowa State Univ., Ames, IA (United States)
Precision radio-frequency measurements of the magnetic susceptibility using the tunnel diode resonator (TDR) technique are used to study the delicate effects in magnetic and superconducting materials. High resolution (in ppb range) measurements are particularly important for studies of the London and Campbell penetration depths in a superconductor and for the investigation of magnetic transitions in (anti)ferromagnets. Due to the small rf magnetic-excitation in a mOe range, the TDR is especially useful at low-temperatures in a mK range, if Joule heating generated in the TDR circuitry is efficiently removed and the circuit is stabilized with sub-mK precision. Unfortunately, the circuit has significant magnetic field dependence, and therefore, most of the precision TDR measurements at low-temperatures were conducted in zero magnetic field. In this work, we describe the design of a setup for precision TDR measurements in a dilution refrigerator down to ~40 mK with a 14 T superconducting magnet. The key features of our design are the separated electronics components and the placement of the most field sensitive parts in the field-compensated zone far from the center of solenoid as well as the heat-sinking at a higher temperature stage. As a result, the performance of the working setup is demonstrated using several superconductors.
- Research Organization:
- Ames Laboratory (AMES), Ames, IA (United States)
- Sponsoring Organization:
- USDOE
- Grant/Contract Number:
- AC02-07CH11358
- OSTI ID:
- 1478992
- Alternate ID(s):
- OSTI ID: 1472213
- Report Number(s):
- IS-J-9781
- Journal Information:
- Review of Scientific Instruments, Vol. 89, Issue 9; ISSN 0034-6748
- Publisher:
- American Institute of Physics (AIP)Copyright Statement
- Country of Publication:
- United States
- Language:
- English
Web of Science
Dielectric resonator method for determining gap symmetry of superconductors through anisotropic nonlinear Meissner effect
|
journal | April 2019 |
Dielectric Resonator Method For Determining Gap Symmetry Of Superconductors Through Anisotropic Nonlinear Meissner Effect | text | January 2019 |
Similar Records
Magnetic susceptibility and contactless resistivity measurements of percolating superconductivity in tin-doped bismuth
Campbell penetration depth in low carrier density superconductor YPtBi