skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Critical computational analysis illuminates the reductive-elimination mechanism that activates nitrogenase for N 2 reduction

Abstract

Recent spectroscopic, kinetic, photophysical, and thermodynamic measurements show activation of nitrogenase for N 2 → 2NH 3 reduction involves the reductive elimination ( re ) of H 2 from two [Fe–H–Fe] bridging hydrides bound to the catalytic [7Fe–9S–Mo–C–homocitrate] FeMo-cofactor (FeMo-co). These studies rationalize the Lowe–Thorneley kinetic scheme’s proposal of mechanistically obligatory formation of one H 2 for each N 2 reduced. They also provide an overall framework for understanding the mechanism of nitrogen fixation by nitrogenase. However, they directly pose fundamental questions addressed computationally here. We here report an extensive computational investigation of the structure and energetics of possible nitrogenase intermediates using structural models for the active site with a broad range in complexity, while evaluating a diverse set of density functional theory flavors. ( i ) This shows that to prevent spurious disruption of FeMo-co having accumulated 4[ e /H + ] it is necessary to include: all residues (and water molecules) interacting directly with FeMo-co via specific H-bond interactions; nonspecific local electrostatic interactions; and steric confinement. ( ii ) These calculations indicate an important role of sulfide hemilability in the overall conversion of E 0 to a diazene-level intermediate. ( iii ) Perhaps most importantly, they explainmore » ( iiia ) how the enzyme mechanistically couples exothermic H 2 formation to endothermic cleavage of the N≡N triple bond in a nearly thermoneutral re /oxidative-addition equilibrium, ( iiib ) while preventing the “futile” generation of two H 2 without N 2 reduction: hydride re generates an H 2 complex, but H 2 is only lost when displaced by N 2 , to form an end-on N 2 complex that proceeds to a diazene-level intermediate.« less

Authors:
; ; ORCiD logo
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1478700
Grant/Contract Number:  
AC05-76RL01830/FWP66476; SC0010687
Resource Type:
Published Article
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Name: Proceedings of the National Academy of Sciences of the United States of America Journal Volume: 115 Journal Issue: 45; Journal ID: ISSN 0027-8424
Publisher:
Proceedings of the National Academy of Sciences
Country of Publication:
United States
Language:
English

Citation Formats

Raugei, Simone, Seefeldt, Lance C., and Hoffman, Brian M. Critical computational analysis illuminates the reductive-elimination mechanism that activates nitrogenase for N 2 reduction. United States: N. p., 2018. Web. doi:10.1073/pnas.1810211115.
Raugei, Simone, Seefeldt, Lance C., & Hoffman, Brian M. Critical computational analysis illuminates the reductive-elimination mechanism that activates nitrogenase for N 2 reduction. United States. doi:10.1073/pnas.1810211115.
Raugei, Simone, Seefeldt, Lance C., and Hoffman, Brian M. Wed . "Critical computational analysis illuminates the reductive-elimination mechanism that activates nitrogenase for N 2 reduction". United States. doi:10.1073/pnas.1810211115.
@article{osti_1478700,
title = {Critical computational analysis illuminates the reductive-elimination mechanism that activates nitrogenase for N 2 reduction},
author = {Raugei, Simone and Seefeldt, Lance C. and Hoffman, Brian M.},
abstractNote = {Recent spectroscopic, kinetic, photophysical, and thermodynamic measurements show activation of nitrogenase for N 2 → 2NH 3 reduction involves the reductive elimination ( re ) of H 2 from two [Fe–H–Fe] bridging hydrides bound to the catalytic [7Fe–9S–Mo–C–homocitrate] FeMo-cofactor (FeMo-co). These studies rationalize the Lowe–Thorneley kinetic scheme’s proposal of mechanistically obligatory formation of one H 2 for each N 2 reduced. They also provide an overall framework for understanding the mechanism of nitrogen fixation by nitrogenase. However, they directly pose fundamental questions addressed computationally here. We here report an extensive computational investigation of the structure and energetics of possible nitrogenase intermediates using structural models for the active site with a broad range in complexity, while evaluating a diverse set of density functional theory flavors. ( i ) This shows that to prevent spurious disruption of FeMo-co having accumulated 4[ e − /H + ] it is necessary to include: all residues (and water molecules) interacting directly with FeMo-co via specific H-bond interactions; nonspecific local electrostatic interactions; and steric confinement. ( ii ) These calculations indicate an important role of sulfide hemilability in the overall conversion of E 0 to a diazene-level intermediate. ( iii ) Perhaps most importantly, they explain ( iiia ) how the enzyme mechanistically couples exothermic H 2 formation to endothermic cleavage of the N≡N triple bond in a nearly thermoneutral re /oxidative-addition equilibrium, ( iiib ) while preventing the “futile” generation of two H 2 without N 2 reduction: hydride re generates an H 2 complex, but H 2 is only lost when displaced by N 2 , to form an end-on N 2 complex that proceeds to a diazene-level intermediate.},
doi = {10.1073/pnas.1810211115},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 45,
volume = 115,
place = {United States},
year = {2018},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1073/pnas.1810211115

Citation Metrics:
Cited by: 16 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Is Mo Involved in Hydride Binding by the Four-Electron Reduced (E 4 ) Intermediate of the Nitrogenase MoFe Protein?
journal, March 2010

  • Lukoyanov, Dmitriy; Yang, Zhi-Yong; Dean, Dennis R.
  • Journal of the American Chemical Society, Vol. 132, Issue 8
  • DOI: 10.1021/ja910613m

Ligand-Bound S = 1 / 2 FeMo-Cofactor of Nitrogenase: Hyperfine Interaction Analysis and Implication for the Central Ligand X Identity
journal, July 2008

  • Pelmenschikov, Vladimir; Case, David A.; Noodleman, Louis
  • Inorganic Chemistry, Vol. 47, Issue 14
  • DOI: 10.1021/ic7022743

Density-functional exchange-energy approximation with correct asymptotic behavior
journal, September 1988


Dinitrogen metal complexes with a strongly activated N–N bond: a computational investigation of [(Cy2N)3Nb-(μ-NN)-Nb(NCy2)3] and related [Nb-(μ-NN)-Nb] systems
journal, January 2012

  • Cavigliasso, Germán; Stranger, Robert; Yates, Brian F.
  • Dalton Transactions, Vol. 41, Issue 45
  • DOI: 10.1039/c2dt31845h

FeMo Cofactor of Nitrogenase:  A Density Functional Study of States M N , M OX , M R , and M I
journal, December 2001

  • Lovell, Timothy; Li, Jian; Liu, Tiqing
  • Journal of the American Chemical Society, Vol. 123, Issue 49
  • DOI: 10.1021/ja011860y

Erratum: Density-functional approximation for the correlation energy of the inhomogeneous electron gas
journal, November 1986


Activation of dinitrogen at binuclear sites
journal, August 1990


Revisiting the Mössbauer Isomer Shifts of the FeMoco Cluster of Nitrogenase and the Cofactor Charge
journal, January 2017


Is there computational support for an unprotonated carbon in the E 4 state of nitrogenase?
journal, December 2017

  • Siegbahn, Per E. M.
  • Journal of Computational Chemistry, Vol. 39, Issue 12
  • DOI: 10.1002/jcc.25145

Mechanism of Nitrogen Fixation by Nitrogenase: The Next Stage
journal, January 2014

  • Hoffman, Brian M.; Lukoyanov, Dmitriy; Yang, Zhi-Yong
  • Chemical Reviews, Vol. 114, Issue 8
  • DOI: 10.1021/cr400641x

Strong Electron Correlation in Nitrogenase Cofactor, FeMoco
journal, May 2018

  • Montgomery, Jason M.; Mazziotti, David A.
  • The Journal of Physical Chemistry A, Vol. 122, Issue 22
  • DOI: 10.1021/acs.jpca.8b00941

Nitrogenase: A Draft Mechanism
journal, December 2012

  • Hoffman, Brian M.; Lukoyanov, Dmitriy; Dean, Dennis R.
  • Accounts of Chemical Research, Vol. 46, Issue 2
  • DOI: 10.1021/ar300267m

COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient
journal, January 1993


Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules
journal, January 1971

  • Ditchfield, R.; Hehre, W. J.; Pople, J. A.
  • The Journal of Chemical Physics, Vol. 54, Issue 2
  • DOI: 10.1063/1.1674902

Reductive Elimination of H 2 Activates Nitrogenase to Reduce the N≡N Triple Bond: Characterization of the E 4 (4H) Janus Intermediate in Wild-Type Enzyme
journal, August 2016

  • Lukoyanov, Dmitriy; Khadka, Nimesh; Yang, Zhi-Yong
  • Journal of the American Chemical Society, Vol. 138, Issue 33
  • DOI: 10.1021/jacs.6b06362

Ammonia Production at the FeMo Cofactor of Nitrogenase:  Results from Density Functional Theory
journal, March 2007

  • Kästner, Johannes; Blöchl, Peter E.
  • Journal of the American Chemical Society, Vol. 129, Issue 10
  • DOI: 10.1021/ja068618h

Hybrid-density functional study of magnetism and ligand control in Ni9 complexes
journal, April 2006


Structure−Function Relationships of Alternative Nitrogenases
journal, January 1996


Theory of chemical bonds in metalloenzymes V: Hybrid-DFT studies of the inorganic [8Fe–7S] core
journal, January 2006

  • Shoji, M.; Koizumi, K.; Kitagawa, Y.
  • International Journal of Quantum Chemistry, Vol. 106, Issue 15
  • DOI: 10.1002/qua.21201

Revised Basis Sets for the LANL Effective Core Potentials
journal, June 2008

  • Roy, Lindsay E.; Hay, P. Jeffrey; Martin, Richard L.
  • Journal of Chemical Theory and Computation, Vol. 4, Issue 7
  • DOI: 10.1021/ct8000409

Accurate description of van der Waals complexes by density functional theory including empirical corrections
journal, January 2004

  • Grimme, Stefan
  • Journal of Computational Chemistry, Vol. 25, Issue 12
  • DOI: 10.1002/jcc.20078

A bound reaction intermediate sheds light on the mechanism of nitrogenase
journal, March 2018


The Heats of Formation of Diazene, Hydrazine, N 2 H 3 + , N 2 H 5 + , N 2 H, and N 2 H 3 and the Methyl Derivatives CH 3 NNH, CH 3 NNCH 3 , and CH 3 HNNHCH 3
journal, August 2006

  • Matus, Myrna H.; Arduengo, Anthony J.; Dixon, David A.
  • The Journal of Physical Chemistry A, Vol. 110, Issue 33
  • DOI: 10.1021/jp061854u

Fully optimized contracted Gaussian basis sets for atoms Li to Kr
journal, August 1992

  • Schäfer, Ansgar; Horn, Hans; Ahlrichs, Reinhart
  • The Journal of Chemical Physics, Vol. 97, Issue 4
  • DOI: 10.1063/1.463096

NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations
journal, September 2010

  • Valiev, M.; Bylaska, E. J.; Govind, N.
  • Computer Physics Communications, Vol. 181, Issue 9, p. 1477-1489
  • DOI: 10.1016/j.cpc.2010.04.018

Interplay of hemilability and redox activity in models of hydrogenase active sites
journal, October 2017

  • Ding, Shengda; Ghosh, Pokhraj; Darensbourg, Marcetta Y.
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 46
  • DOI: 10.1073/pnas.1710475114

Nitrogenase: substrate binding and activation
journal, December 1996

  • Thorneley, R. N. F.; Lowe, D. J.
  • JBIC Journal of Biological Inorganic Chemistry, Vol. 1, Issue 6
  • DOI: 10.1007/s007750050095

Photoinduced Reductive Elimination of H 2 from the Nitrogenase Dihydride (Janus) State Involves a FeMo-cofactor-H 2 Intermediate
journal, February 2017


Quantum mechanics/molecular mechanics structural models of the oxygen-evolving complex of photosystem II
journal, April 2007

  • Sproviero, Eduardo M.; Gascón, José A.; McEvoy, James P.
  • Current Opinion in Structural Biology, Vol. 17, Issue 2
  • DOI: 10.1016/j.sbi.2007.03.015

A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
journal, April 2010

  • Grimme, Stefan; Antony, Jens; Ehrlich, Stephan
  • The Journal of Chemical Physics, Vol. 132, Issue 15
  • DOI: 10.1063/1.3382344

Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint
journal, September 1988

  • Reed, Alan E.; Curtiss, Larry A.; Weinhold, Frank
  • Chemical Reviews, Vol. 88, Issue 6
  • DOI: 10.1021/cr00088a005

Carbonic Anhydrase as a Model for Biophysical and Physical-Organic Studies of Proteins and Protein−Ligand Binding
journal, March 2008

  • Krishnamurthy, Vijay M.; Kaufman, George K.; Urbach, Adam R.
  • Chemical Reviews, Vol. 108, Issue 3
  • DOI: 10.1021/cr050262p

First-Principles Calculations of Fischer-Tropsch Processes Catalyzed by Nitrogenase Enzymes
journal, December 2012


Density‐functional thermochemistry. III. The role of exact exchange
journal, April 1993

  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 98, Issue 7, p. 5648-5652
  • DOI: 10.1063/1.464913

Nitrogen Binding to the FeMo-Cofactor of Nitrogenase
journal, December 2003

  • Schimpl, Johannes; Petrilli, Helena M.; Blöchl, Peter E.
  • Journal of the American Chemical Society, Vol. 125, Issue 51
  • DOI: 10.1021/ja0367997

Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
journal, January 1988


Protonation States of Homocitrate and Nearby Residues in Nitrogenase Studied by Computational Methods and Quantum Refinement
journal, August 2017

  • Cao, Lili; Caldararu, Octav; Ryde, Ulf
  • The Journal of Physical Chemistry B, Vol. 121, Issue 35
  • DOI: 10.1021/acs.jpcb.7b02714

Mechanistic insights into nitrogen fixation by nitrogenase enzymes
journal, January 2015

  • Varley, J. B.; Wang, Y.; Chan, K.
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 44
  • DOI: 10.1039/C5CP04034E

Examining the relationship between coordination mode and reactivity of dinitrogen
journal, March 2017


Towards an Understanding of the Workings of Nitrogenase from DFT Calculations
journal, September 2005


Density-functional approximation for the correlation energy of the inhomogeneous electron gas
journal, June 1986


A Major Structural Change of the Homocitrate Ligand of Probable Importance for the Nitrogenase Mechanism
journal, January 2018


CO 2 Reduction Catalyzed by Nitrogenase: Pathways to Formate, Carbon Monoxide, and Methane
journal, August 2016


High-Level Spectroscopy, Quantum Chemistry, and Catalysis: Not just a Passing Fad
journal, August 2017


Activation and protonation of dinitrogen at the FeMo cofactor of nitrogenase
journal, August 2005

  • Kästner, Johannes; Hemmen, Sascha; Blöchl, Peter E.
  • The Journal of Chemical Physics, Vol. 123, Issue 7
  • DOI: 10.1063/1.2008227

Hemilabile Bridging Thiolates as Proton Shuttles in Bioinspired H 2 Production Electrocatalysts
journal, September 2016

  • Ding, Shengda; Ghosh, Pokhraj; Lunsford, Allen M.
  • Journal of the American Chemical Society, Vol. 138, Issue 39
  • DOI: 10.1021/jacs.6b06461

Identification of a spin-coupled Mo( iii ) in the nitrogenase iron–molybdenum cofactor
journal, January 2014

  • Bjornsson, Ragnar; Lima, Frederico A.; Spatzal, Thomas
  • Chem. Sci., Vol. 5, Issue 8
  • DOI: 10.1039/C4SC00337C

Elucidating reaction mechanisms on quantum computers
journal, July 2017

  • Reiher, Markus; Wiebe, Nathan; Svore, Krysta M.
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 29
  • DOI: 10.1073/pnas.1619152114

Evidence for Interstitial Carbon in Nitrogenase FeMo Cofactor
journal, November 2011


Model Calculations Suggest that the Central Carbon in the FeMo-Cofactor of Nitrogenase Becomes Protonated in the Process of Nitrogen Fixation
journal, August 2016

  • Siegbahn, Per E. M.
  • Journal of the American Chemical Society, Vol. 138, Issue 33
  • DOI: 10.1021/jacs.6b03846

Reversible Protonated Resting State of the Nitrogenase Active Site
journal, July 2017

  • Morrison, Christine N.; Spatzal, Thomas; Rees, Douglas C.
  • Journal of the American Chemical Society, Vol. 139, Issue 31
  • DOI: 10.1021/jacs.7b05695

Substrate Channel in Nitrogenase Revealed by a Molecular Dynamics Approach
journal, April 2014

  • Smith, Dayle; Danyal, Karamatullah; Raugei, Simone
  • Biochemistry, Vol. 53, Issue 14
  • DOI: 10.1021/bi401313j

Mechanism of Molybdenum Nitrogenase
journal, January 1996

  • Burgess, Barbara K.; Lowe, David J.
  • Chemical Reviews, Vol. 96, Issue 7
  • DOI: 10.1021/cr950055x

Quantum Mechanics/Molecular Mechanics Study of the Catalytic Cycle of Water Splitting in Photosystem II
journal, March 2008

  • Sproviero, Eduardo M.; Gascón, José A.; McEvoy, James P.
  • Journal of the American Chemical Society, Vol. 130, Issue 11
  • DOI: 10.1021/ja076130q

System-Dependent Dispersion Coefficients for the DFT-D3 Treatment of Adsorption Processes on Ionic Surfaces
journal, October 2011

  • Ehrlich, Stephan; Moellmann, Jonas; Reckien, Werner
  • ChemPhysChem, Vol. 12, Issue 17
  • DOI: 10.1002/cphc.201100521

Comparative Assessment of the Composition and Charge State of Nitrogenase FeMo-Cofactor
journal, June 2011

  • Harris, Travis V.; Szilagyi, Robert K.
  • Inorganic Chemistry, Vol. 50, Issue 11
  • DOI: 10.1021/ic102446n

Insights into properties and energetics of iron–sulfur proteins from simple clusters to nitrogenase
journal, April 2002


A new definition of cavities for the computation of solvation free energies by the polarizable continuum model
journal, August 1997

  • Barone, Vincenzo; Cossi, Maurizio; Tomasi, Jacopo
  • The Journal of Chemical Physics, Vol. 107, Issue 8
  • DOI: 10.1063/1.474671