skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrocatalytic oxygen evolution with pure and substituted M 6 (SR) 12 (M=Pd, Fe, Rh) complexes

Abstract

The development of new technologies to generate fuels from water splitting requires highly active and cost-effective catalysts. Organometallic complexes have attracted considerable interests due to their scientific significance and their ability to efficiently photo- and electro-catalyze H 2 and O 2 evolution reactions. Here, we combine density functional theory (DFT) and computational electrochemical analysis to predict the oxygen evolution reaction (OER) activity of a series of organometallic complexes containing methyl thiol ligands and compare it to that of Ni complex. Here, we find that the OER activity versus the diameter of the hexagonal ring shows a maximum activity which corresponds to that of Ni complex. We also find an existence of linear correlations of the adsorption energies with the ring diameter of the oxidized complexes. In an effort to improve the OER activity of these complexes, we substitute a metal cation with Ni, and we show that Ni-doped complexes give rise to smaller overpotentials. The enhanced overpotential can be explained in terms of the overall affinity of active sites for reactive species resulting in a shift of their binding energies. Finally, we find that substituting Fe atoms into small organometallic Ni complex does not appear to have the same influencemore » that has been observed in bulk materials. We believe these predictions will help guide catalyst design by identifying active and robust OER catalysts, capable to reduce the energy required for the anodic water oxidation. Reducing anodic overpotentials will help reduce the overall energy requirements of both H 2 evolution and CO 2 reduction systems.« less

Authors:
ORCiD logo [1];  [2];  [2]
  1. National Energy Technology Lab. (NETL), Albany, OR (United States); AECOM, Albany, OR (United States)
  2. National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)
Publication Date:
Research Org.:
National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States)
Sponsoring Org.:
USDOE Office of Fossil Energy (FE)
OSTI Identifier:
1478369
Grant/Contract Number:  
[FE0004000]
Resource Type:
Accepted Manuscript
Journal Name:
Computational Materials Science
Additional Journal Information:
[ Journal Volume: 150; Journal Issue: C]; Journal ID: ISSN 0927-0256
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Tafen, De Nyago, Kauffman, Douglas R., and Alfonso, Dominic R. Electrocatalytic oxygen evolution with pure and substituted M 6 (SR) 12 (M=Pd, Fe, Rh) complexes. United States: N. p., 2018. Web. doi:10.1016/j.commatsci.2018.04.024.
Tafen, De Nyago, Kauffman, Douglas R., & Alfonso, Dominic R. Electrocatalytic oxygen evolution with pure and substituted M 6 (SR) 12 (M=Pd, Fe, Rh) complexes. United States. doi:10.1016/j.commatsci.2018.04.024.
Tafen, De Nyago, Kauffman, Douglas R., and Alfonso, Dominic R. Fri . "Electrocatalytic oxygen evolution with pure and substituted M 6 (SR) 12 (M=Pd, Fe, Rh) complexes". United States. doi:10.1016/j.commatsci.2018.04.024. https://www.osti.gov/servlets/purl/1478369.
@article{osti_1478369,
title = {Electrocatalytic oxygen evolution with pure and substituted M 6 (SR) 12 (M=Pd, Fe, Rh) complexes},
author = {Tafen, De Nyago and Kauffman, Douglas R. and Alfonso, Dominic R.},
abstractNote = {The development of new technologies to generate fuels from water splitting requires highly active and cost-effective catalysts. Organometallic complexes have attracted considerable interests due to their scientific significance and their ability to efficiently photo- and electro-catalyze H2 and O2 evolution reactions. Here, we combine density functional theory (DFT) and computational electrochemical analysis to predict the oxygen evolution reaction (OER) activity of a series of organometallic complexes containing methyl thiol ligands and compare it to that of Ni complex. Here, we find that the OER activity versus the diameter of the hexagonal ring shows a maximum activity which corresponds to that of Ni complex. We also find an existence of linear correlations of the adsorption energies with the ring diameter of the oxidized complexes. In an effort to improve the OER activity of these complexes, we substitute a metal cation with Ni, and we show that Ni-doped complexes give rise to smaller overpotentials. The enhanced overpotential can be explained in terms of the overall affinity of active sites for reactive species resulting in a shift of their binding energies. Finally, we find that substituting Fe atoms into small organometallic Ni complex does not appear to have the same influence that has been observed in bulk materials. We believe these predictions will help guide catalyst design by identifying active and robust OER catalysts, capable to reduce the energy required for the anodic water oxidation. Reducing anodic overpotentials will help reduce the overall energy requirements of both H2 evolution and CO2 reduction systems.},
doi = {10.1016/j.commatsci.2018.04.024},
journal = {Computational Materials Science},
number = [C],
volume = [150],
place = {United States},
year = {2018},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share: