DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Silicon Qubits

Abstract

There are two good reasons to attempt to build quantum bits (qubits) out of silicon. The first is the obvious foundation of classical microelectronics. Although silicon quantum computers would operate in a fundamentally different way from classical computers$-$for example, at cryogenic temperatures$-$still the level of development in material quality, crystal growth, and fabrication methodologies for silicon is unrivaled by any other material in the world. Leveraging even a small fraction of the worldwide investment in silicon for qubit development could potentially put silicon-based qubits far ahead of other solid-state alternatives. The second, less obvious reason for choosing silicon is the remarkably clean magnetic environment witnessed by spins in highly purified and isotopically enriched silicon material. Fortuitously, 95.3% of the naturally occurring isotopes of Si nuclei (28Si and 30Si) are spin-0. These nuclei therefore have a “closed shell” of nuclear moments, providing no external magnetic field whatsoever. Add to this the possibility of intrinsic silicon with part-per-billion chemical quality and the system is remarkably close to “vacuum” with respect to magnetic noise properties.

Authors:
 [1];  [2]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  2. HRL Lab. LLC, Malibu, CA (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1478329
Report Number(s):
SAND-2017-5868J
653840
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Encyclopedia of Modern Optics
Additional Journal Information:
Journal Volume: 1
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Charge qubit; CMOS; Donor; Exchange interaction; Heterostructure; Quantum computing; Quantum dot; Quantum measurement; SiGe; Single electron transistor; Spin qubit; STM lithography; Valley splitting

Citation Formats

Carroll, Malcolm S., and Ladd, Thaddeus D. Silicon Qubits. United States: N. p., 2018. Web. doi:10.1016/b978-0-12-803581-8.09736-8.
Carroll, Malcolm S., & Ladd, Thaddeus D. Silicon Qubits. United States. https://doi.org/10.1016/b978-0-12-803581-8.09736-8
Carroll, Malcolm S., and Ladd, Thaddeus D. Wed . "Silicon Qubits". United States. https://doi.org/10.1016/b978-0-12-803581-8.09736-8. https://www.osti.gov/servlets/purl/1478329.
@article{osti_1478329,
title = {Silicon Qubits},
author = {Carroll, Malcolm S. and Ladd, Thaddeus D.},
abstractNote = {There are two good reasons to attempt to build quantum bits (qubits) out of silicon. The first is the obvious foundation of classical microelectronics. Although silicon quantum computers would operate in a fundamentally different way from classical computers$-$for example, at cryogenic temperatures$-$still the level of development in material quality, crystal growth, and fabrication methodologies for silicon is unrivaled by any other material in the world. Leveraging even a small fraction of the worldwide investment in silicon for qubit development could potentially put silicon-based qubits far ahead of other solid-state alternatives. The second, less obvious reason for choosing silicon is the remarkably clean magnetic environment witnessed by spins in highly purified and isotopically enriched silicon material. Fortuitously, 95.3% of the naturally occurring isotopes of Si nuclei (28Si and 30Si) are spin-0. These nuclei therefore have a “closed shell” of nuclear moments, providing no external magnetic field whatsoever. Add to this the possibility of intrinsic silicon with part-per-billion chemical quality and the system is remarkably close to “vacuum” with respect to magnetic noise properties.},
doi = {10.1016/b978-0-12-803581-8.09736-8},
journal = {Encyclopedia of Modern Optics},
number = ,
volume = 1,
place = {United States},
year = {2018},
month = {2}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Figures / Tables:

Figure 1 Figure 1: Table indicating the three principle types of silicon qubits; the sketch column gives a rough image of the band structure as a black line, the electron wave function in red, and the material stack below.

Save / Share:

Works referenced in this record:

Single-spin CCD
journal, January 2016


Reconfigurable quadruple quantum dots in a silicon nanowire transistor
journal, May 2016

  • Betz, A. C.; Tagliaferri, M. L. V.; Vinet, M.
  • Applied Physics Letters, Vol. 108, Issue 20
  • DOI: 10.1063/1.4950976

Pauli spin blockade in undoped Si/SiGe two-electron double quantum dots
journal, August 2011

  • Borselli, M. G.; Eng, K.; Croke, E. T.
  • Applied Physics Letters, Vol. 99, Issue 6
  • DOI: 10.1063/1.3623479

Quantum control and manipulation of donor electrons in Si-based quantum computing
journal, June 2009

  • Calderón, M. J.; Saraiva, A.; Koiller, Belita
  • Journal of Applied Physics, Vol. 105, Issue 12
  • DOI: 10.1063/1.3124084

Bell's inequality violation with spins in silicon
journal, November 2015

  • Dehollain, Juan P.; Simmons, Stephanie; Muhonen, Juha T.
  • Nature Nanotechnology, Vol. 11, Issue 3
  • DOI: 10.1038/nnano.2015.262

Silicon quantum computation based on magnetic dipolar coupling
journal, November 2004


Universal quantum computation with the exchange interaction
journal, November 2000

  • DiVincenzo, D. P.; Bacon, D.; Kempe, J.
  • Nature, Vol. 408, Issue 6810
  • DOI: 10.1038/35042541

Isotopically enhanced triple-quantum-dot qubit
journal, May 2015


Comparison of low frequency charge noise in identically patterned Si/SiO 2 and Si/SiGe quantum dots
journal, June 2016

  • Freeman, Blake M.; Schoenfield, Joshua S.; Jiang, HongWen
  • Applied Physics Letters, Vol. 108, Issue 25
  • DOI: 10.1063/1.4954700

A single-atom transistor
journal, February 2012

  • Fuechsle, Martin; Miwa, Jill A.; Mahapatra, Suddhasatta
  • Nature Nanotechnology, Vol. 7, Issue 4
  • DOI: 10.1038/nnano.2012.21

Coherent shuttle of electron-spin states
journal, June 2017

  • Fujita, Takafumi; Baart, Timothy Alexander; Reichl, Christian
  • npj Quantum Information, Vol. 3, Issue 1
  • DOI: 10.1038/s41534-017-0024-4

Valley splitting of single-electron Si MOS quantum dots
journal, December 2016

  • Gamble, John King; Harvey-Collard, Patrick; Jacobson, N. Tobias
  • Applied Physics Letters, Vol. 109, Issue 25
  • DOI: 10.1063/1.4972514

Probing the limits of gate-based charge sensing
journal, January 2015

  • Gonzalez-Zalba, M. F.; Barraud, S.; Ferguson, A. J.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7084

Gate-Sensing Coherent Charge Oscillations in a Silicon Field-Effect Transistor
journal, February 2016


Coherent coupling between a quantum dot and a donor in silicon
journal, October 2017

  • Harvey-Collard, Patrick; Jacobson, N. Tobias; Rudolph, Martin
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/s41467-017-01113-2

A surface code quantum computer in silicon
journal, October 2015

  • Hill, Charles D.; Peretz, Eldad; Hile, Samuel J.
  • Science Advances, Vol. 1, Issue 9
  • DOI: 10.1126/sciadv.1500707

Two-dimensional architectures for donor-based quantum computing
journal, July 2006


Life after charge noise: recent results with transmon qubits
journal, February 2009


A silicon-based nuclear spin quantum computer
journal, May 1998


Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot
journal, August 2014


Electrically controlling single-spin qubits in a continuous microwave field
journal, April 2015

  • Laucht, Arne; Muhonen, Juha T.; Mohiyaddin, Fahd A.
  • Science Advances, Vol. 1, Issue 3
  • DOI: 10.1126/sciadv.1500022

Coherent creation and destruction of orbital wavepackets in Si:P with electrical and optical read-out
journal, March 2015

  • Litvinenko, K. L.; Bowyer, E. T.; Greenland, P. T.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7549

Quantum computation with quantum dots
journal, January 1998


Coherent singlet-triplet oscillations in a silicon-based double quantum dot
journal, January 2012

  • Maune, B. M.; Borselli, M. G.; Huang, B.
  • Nature, Vol. 481, Issue 7381
  • DOI: 10.1038/nature10707

A CMOS silicon spin qubit
journal, November 2016

  • Maurand, R.; Jehl, X.; Kotekar-Patil, D.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13575

Strong coupling of a single electron in silicon to a microwave photon
journal, December 2016


A photonic platform for donor spin qubits in silicon
journal, July 2017

  • Morse, Kevin J.; Abraham, Rohan J. S.; DeAbreu, Adam
  • Science Advances, Vol. 3, Issue 7
  • DOI: 10.1126/sciadv.1700930

Storing quantum information for 30 seconds in a nanoelectronic device
journal, October 2014

  • Muhonen, Juha T.; Dehollain, Juan P.; Laucht, Arne
  • Nature Nanotechnology, Vol. 9, Issue 12
  • DOI: 10.1038/nnano.2014.211

High-fidelity entangling gate for double-quantum-dot spin qubits
journal, January 2017

  • Nichol, John M.; Orona, Lucas A.; Harvey, Shannon P.
  • npj Quantum Information, Vol. 3, Issue 1
  • DOI: 10.1038/s41534-016-0003-1

A silicon-based surface code quantum computer
journal, February 2016

  • O’Gorman, Joe; Nickerson, Naomi H.; Ross, Philipp
  • npj Quantum Information, Vol. 2, Issue 1
  • DOI: 10.1038/npjqi.2015.19

Surface code architecture for donors and dots in silicon with imprecise and nonuniform qubit couplings
journal, January 2016


Gate-induced g -factor control and dimensional transition for donors in multivalley semiconductors
journal, October 2009


Reduced Sensitivity to Charge Noise in Semiconductor Spin Qubits via Symmetric Operation
journal, March 2016


Room-Temperature Quantum Bit Storage Exceeding 39 Minutes Using Ionized Donors in Silicon-28
journal, November 2013


Ultralow-Noise Atomic-Scale Structures for Quantum Circuitry in Silicon
journal, August 2016


Hydrogenic Spin Quantum Computing in Silicon: A Digital Approach
journal, February 2003


A fault-tolerant addressable spin qubit in a natural silicon quantum dot
journal, August 2016


Robust controlled-NOT gate in the presence of large fabrication-induced variations of the exchange interaction strength
journal, July 2007


Silicon quantum processor with robust long-distance qubit couplings
journal, September 2017


Electron spin coherence exceeding seconds in high-purity silicon
journal, December 2011

  • Tyryshkin, Alexei M.; Tojo, Shinichi; Morton, John J. L.
  • Nature Materials, Vol. 11, Issue 2
  • DOI: 10.1038/nmat3182

Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent
journal, September 2017


An addressable quantum dot qubit with fault-tolerant control-fidelity
journal, October 2014

  • Veldhorst, M.; Hwang, J. C. C.; Yang, C. H.
  • Nature Nanotechnology, Vol. 9, Issue 12
  • DOI: 10.1038/nnano.2014.216

A two-qubit logic gate in silicon
journal, October 2015

  • Veldhorst, M.; Yang, C. H.; Hwang, J. C. C.
  • Nature, Vol. 526, Issue 7573, p. 410-414
  • DOI: 10.1038/nature15263

Silicon CMOS architecture for a spin-based quantum computer
journal, December 2017


Charge Relaxation in a Single-Electron Si / SiGe Double Quantum Dot
journal, July 2013


State-conditional coherent charge qubit oscillations in a Si/SiGe quadruple quantum dot
journal, October 2016

  • Ward, Daniel R.; Kim, Dohun; Savage, Donald E.
  • npj Quantum Information, Vol. 2, Issue 1
  • DOI: 10.1038/npjqi.2016.32

High-Fidelity Rapid Initialization and Read-Out of an Electron Spin via the Single Donor D Charge State
journal, October 2015


Multiqubit gates protected by adiabaticity and dynamical decoupling applicable to donor qubits in silicon
journal, August 2015


Conditional Control of Donor Nuclear Spins in Silicon Using Stark Shifts
journal, October 2014


Spin-valley lifetimes in a silicon quantum dot with tunable valley splitting
journal, June 2013

  • Yang, C. H.; Rossi, A.; Ruskov, R.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3069

A reconfigurable gate architecture for Si/SiGe quantum dots
journal, June 2015

  • Zajac, D. M.; Hazard, T. M.; Mi, X.
  • Applied Physics Letters, Vol. 106, Issue 22
  • DOI: 10.1063/1.4922249

Silicon quantum electronics
journal, July 2013

  • Zwanenburg, Floris A.; Dzurak, Andrew S.; Morello, Andrea
  • Reviews of Modern Physics, Vol. 85, Issue 3
  • DOI: 10.1103/RevModPhys.85.961

Works referencing / citing this record:

Single-spin qubits in isotopically enriched silicon at low magnetic field
journal, December 2019


Fidelity benchmarks for two-qubit gates in silicon
journal, May 2019


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.