Silicon Qubits
Abstract
There are two good reasons to attempt to build quantum bits (qubits) out of silicon. The first is the obvious foundation of classical microelectronics. Although silicon quantum computers would operate in a fundamentally different way from classical computers$-$for example, at cryogenic temperatures$-$still the level of development in material quality, crystal growth, and fabrication methodologies for silicon is unrivaled by any other material in the world. Leveraging even a small fraction of the worldwide investment in silicon for qubit development could potentially put silicon-based qubits far ahead of other solid-state alternatives. The second, less obvious reason for choosing silicon is the remarkably clean magnetic environment witnessed by spins in highly purified and isotopically enriched silicon material. Fortuitously, 95.3% of the naturally occurring isotopes of Si nuclei (28Si and 30Si) are spin-0. These nuclei therefore have a “closed shell” of nuclear moments, providing no external magnetic field whatsoever. Add to this the possibility of intrinsic silicon with part-per-billion chemical quality and the system is remarkably close to “vacuum” with respect to magnetic noise properties.
- Authors:
-
- Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
- HRL Lab. LLC, Malibu, CA (United States)
- Publication Date:
- Research Org.:
- Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
- Sponsoring Org.:
- USDOE National Nuclear Security Administration (NNSA)
- OSTI Identifier:
- 1478329
- Report Number(s):
- SAND-2017-5868J
653840
- Grant/Contract Number:
- AC04-94AL85000
- Resource Type:
- Accepted Manuscript
- Journal Name:
- Encyclopedia of Modern Optics
- Additional Journal Information:
- Journal Volume: 1
- Country of Publication:
- United States
- Language:
- English
- Subject:
- 36 MATERIALS SCIENCE; Charge qubit; CMOS; Donor; Exchange interaction; Heterostructure; Quantum computing; Quantum dot; Quantum measurement; SiGe; Single electron transistor; Spin qubit; STM lithography; Valley splitting
Citation Formats
Carroll, Malcolm S., and Ladd, Thaddeus D. Silicon Qubits. United States: N. p., 2018.
Web. doi:10.1016/b978-0-12-803581-8.09736-8.
Carroll, Malcolm S., & Ladd, Thaddeus D. Silicon Qubits. United States. https://doi.org/10.1016/b978-0-12-803581-8.09736-8
Carroll, Malcolm S., and Ladd, Thaddeus D. Wed .
"Silicon Qubits". United States. https://doi.org/10.1016/b978-0-12-803581-8.09736-8. https://www.osti.gov/servlets/purl/1478329.
@article{osti_1478329,
title = {Silicon Qubits},
author = {Carroll, Malcolm S. and Ladd, Thaddeus D.},
abstractNote = {There are two good reasons to attempt to build quantum bits (qubits) out of silicon. The first is the obvious foundation of classical microelectronics. Although silicon quantum computers would operate in a fundamentally different way from classical computers$-$for example, at cryogenic temperatures$-$still the level of development in material quality, crystal growth, and fabrication methodologies for silicon is unrivaled by any other material in the world. Leveraging even a small fraction of the worldwide investment in silicon for qubit development could potentially put silicon-based qubits far ahead of other solid-state alternatives. The second, less obvious reason for choosing silicon is the remarkably clean magnetic environment witnessed by spins in highly purified and isotopically enriched silicon material. Fortuitously, 95.3% of the naturally occurring isotopes of Si nuclei (28Si and 30Si) are spin-0. These nuclei therefore have a “closed shell” of nuclear moments, providing no external magnetic field whatsoever. Add to this the possibility of intrinsic silicon with part-per-billion chemical quality and the system is remarkably close to “vacuum” with respect to magnetic noise properties.},
doi = {10.1016/b978-0-12-803581-8.09736-8},
journal = {Encyclopedia of Modern Optics},
number = ,
volume = 1,
place = {United States},
year = {2018},
month = {2}
}
Figures / Tables:

Works referenced in this record:
Single-spin CCD
journal, January 2016
- Baart, T. A.; Shafiei, M.; Fujita, T.
- Nature Nanotechnology, Vol. 11, Issue 4
Reconfigurable quadruple quantum dots in a silicon nanowire transistor
journal, May 2016
- Betz, A. C.; Tagliaferri, M. L. V.; Vinet, M.
- Applied Physics Letters, Vol. 108, Issue 20
Pauli spin blockade in undoped Si/SiGe two-electron double quantum dots
journal, August 2011
- Borselli, M. G.; Eng, K.; Croke, E. T.
- Applied Physics Letters, Vol. 99, Issue 6
Quantum control and manipulation of donor electrons in Si-based quantum computing
journal, June 2009
- Calderón, M. J.; Saraiva, A.; Koiller, Belita
- Journal of Applied Physics, Vol. 105, Issue 12
Bell's inequality violation with spins in silicon
journal, November 2015
- Dehollain, Juan P.; Simmons, Stephanie; Muhonen, Juha T.
- Nature Nanotechnology, Vol. 11, Issue 3
Silicon quantum computation based on magnetic dipolar coupling
journal, November 2004
- de Sousa, Rogerio; Delgado, J. D.; Das Sarma, S.
- Physical Review A, Vol. 70, Issue 5
Universal quantum computation with the exchange interaction
journal, November 2000
- DiVincenzo, D. P.; Bacon, D.; Kempe, J.
- Nature, Vol. 408, Issue 6810
Isotopically enhanced triple-quantum-dot qubit
journal, May 2015
- Eng, Kevin; Ladd, Thaddeus D.; Smith, Aaron
- Science Advances, Vol. 1, Issue 4
Comparison of low frequency charge noise in identically patterned Si/SiO 2 and Si/SiGe quantum dots
journal, June 2016
- Freeman, Blake M.; Schoenfield, Joshua S.; Jiang, HongWen
- Applied Physics Letters, Vol. 108, Issue 25
A single-atom transistor
journal, February 2012
- Fuechsle, Martin; Miwa, Jill A.; Mahapatra, Suddhasatta
- Nature Nanotechnology, Vol. 7, Issue 4
Coherent shuttle of electron-spin states
journal, June 2017
- Fujita, Takafumi; Baart, Timothy Alexander; Reichl, Christian
- npj Quantum Information, Vol. 3, Issue 1
Valley splitting of single-electron Si MOS quantum dots
journal, December 2016
- Gamble, John King; Harvey-Collard, Patrick; Jacobson, N. Tobias
- Applied Physics Letters, Vol. 109, Issue 25
Probing the limits of gate-based charge sensing
journal, January 2015
- Gonzalez-Zalba, M. F.; Barraud, S.; Ferguson, A. J.
- Nature Communications, Vol. 6, Issue 1
Gate-Sensing Coherent Charge Oscillations in a Silicon Field-Effect Transistor
journal, February 2016
- Gonzalez-Zalba, M. Fernando; Shevchenko, Sergey N.; Barraud, Sylvain
- Nano Letters, Vol. 16, Issue 3
Coherent coupling between a quantum dot and a donor in silicon
journal, October 2017
- Harvey-Collard, Patrick; Jacobson, N. Tobias; Rudolph, Martin
- Nature Communications, Vol. 8, Issue 1
A surface code quantum computer in silicon
journal, October 2015
- Hill, Charles D.; Peretz, Eldad; Hile, Samuel J.
- Science Advances, Vol. 1, Issue 9
Two-dimensional architectures for donor-based quantum computing
journal, July 2006
- Hollenberg, L. C. L.; Greentree, A. D.; Fowler, A. G.
- Physical Review B, Vol. 74, Issue 4
Life after charge noise: recent results with transmon qubits
journal, February 2009
- Houck, A. A.; Koch, Jens; Devoret, M. H.
- Quantum Information Processing, Vol. 8, Issue 2-3
A silicon-based nuclear spin quantum computer
journal, May 1998
- Kane, B. E.
- Nature, Vol. 393, Issue 6681
Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot
journal, August 2014
- Kawakami, E.; Scarlino, P.; Ward, D. R.
- Nature Nanotechnology, Vol. 9, Issue 9
Electrically controlling single-spin qubits in a continuous microwave field
journal, April 2015
- Laucht, Arne; Muhonen, Juha T.; Mohiyaddin, Fahd A.
- Science Advances, Vol. 1, Issue 3
Coherent creation and destruction of orbital wavepackets in Si:P with electrical and optical read-out
journal, March 2015
- Litvinenko, K. L.; Bowyer, E. T.; Greenland, P. T.
- Nature Communications, Vol. 6, Issue 1
Quantum computation with quantum dots
journal, January 1998
- Loss, Daniel; DiVincenzo, David P.
- Physical Review A, Vol. 57, Issue 1
Coherent singlet-triplet oscillations in a silicon-based double quantum dot
journal, January 2012
- Maune, B. M.; Borselli, M. G.; Huang, B.
- Nature, Vol. 481, Issue 7381
A CMOS silicon spin qubit
journal, November 2016
- Maurand, R.; Jehl, X.; Kotekar-Patil, D.
- Nature Communications, Vol. 7, Issue 1
Strong coupling of a single electron in silicon to a microwave photon
journal, December 2016
- Mi, X.; Cady, J. V.; Zajac, D. M.
- Science, Vol. 355, Issue 6321
A photonic platform for donor spin qubits in silicon
journal, July 2017
- Morse, Kevin J.; Abraham, Rohan J. S.; DeAbreu, Adam
- Science Advances, Vol. 3, Issue 7
Storing quantum information for 30 seconds in a nanoelectronic device
journal, October 2014
- Muhonen, Juha T.; Dehollain, Juan P.; Laucht, Arne
- Nature Nanotechnology, Vol. 9, Issue 12
High-fidelity entangling gate for double-quantum-dot spin qubits
journal, January 2017
- Nichol, John M.; Orona, Lucas A.; Harvey, Shannon P.
- npj Quantum Information, Vol. 3, Issue 1
A silicon-based surface code quantum computer
journal, February 2016
- O’Gorman, Joe; Nickerson, Naomi H.; Ross, Philipp
- npj Quantum Information, Vol. 2, Issue 1
Surface code architecture for donors and dots in silicon with imprecise and nonuniform qubit couplings
journal, January 2016
- Pica, G.; Lovett, B. W.; Bhatt, R. N.
- Physical Review B, Vol. 93, Issue 3
Gate-induced -factor control and dimensional transition for donors in multivalley semiconductors
journal, October 2009
- Rahman, Rajib; Park, Seung H.; Boykin, Timothy B.
- Physical Review B, Vol. 80, Issue 15
Reduced Sensitivity to Charge Noise in Semiconductor Spin Qubits via Symmetric Operation
journal, March 2016
- Reed, M. D.; Maune, B. M.; Andrews, R. W.
- Physical Review Letters, Vol. 116, Issue 11
Room-Temperature Quantum Bit Storage Exceeding 39 Minutes Using Ionized Donors in Silicon-28
journal, November 2013
- Saeedi, K.; Simmons, S.; Salvail, J. Z.
- Science, Vol. 342, Issue 6160
Ultralow-Noise Atomic-Scale Structures for Quantum Circuitry in Silicon
journal, August 2016
- Shamim, Saquib; Weber, Bent; Thompson, Daniel W.
- Nano Letters, Vol. 16, Issue 9
Hydrogenic Spin Quantum Computing in Silicon: A Digital Approach
journal, February 2003
- Skinner, A. J.; Davenport, M. E.; Kane, B. E.
- Physical Review Letters, Vol. 90, Issue 8
A fault-tolerant addressable spin qubit in a natural silicon quantum dot
journal, August 2016
- Takeda, Kenta; Kamioka, Jun; Otsuka, Tomohiro
- Science Advances, Vol. 2, Issue 8
Robust controlled-NOT gate in the presence of large fabrication-induced variations of the exchange interaction strength
journal, July 2007
- Testolin, M. J.; Hill, C. D.; Wellard, C. J.
- Physical Review A, Vol. 76, Issue 1
Silicon quantum processor with robust long-distance qubit couplings
journal, September 2017
- Tosi, Guilherme; Mohiyaddin, Fahd A.; Schmitt, Vivien
- Nature Communications, Vol. 8, Issue 1
Electron spin coherence exceeding seconds in high-purity silicon
journal, December 2011
- Tyryshkin, Alexei M.; Tojo, Shinichi; Morton, John J. L.
- Nature Materials, Vol. 11, Issue 2
Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent
journal, September 2017
- Vandersypen, L. M. K.; Bluhm, H.; Clarke, J. S.
- npj Quantum Information, Vol. 3, Issue 1
An addressable quantum dot qubit with fault-tolerant control-fidelity
journal, October 2014
- Veldhorst, M.; Hwang, J. C. C.; Yang, C. H.
- Nature Nanotechnology, Vol. 9, Issue 12
A two-qubit logic gate in silicon
journal, October 2015
- Veldhorst, M.; Yang, C. H.; Hwang, J. C. C.
- Nature, Vol. 526, Issue 7573, p. 410-414
Silicon CMOS architecture for a spin-based quantum computer
journal, December 2017
- Veldhorst, M.; Eenink, H. G. J.; Yang, C. H.
- Nature Communications, Vol. 8, Issue 1
Charge Relaxation in a Single-Electron Double Quantum Dot
journal, July 2013
- Wang, K.; Payette, C.; Dovzhenko, Y.
- Physical Review Letters, Vol. 111, Issue 4
State-conditional coherent charge qubit oscillations in a Si/SiGe quadruple quantum dot
journal, October 2016
- Ward, Daniel R.; Kim, Dohun; Savage, Donald E.
- npj Quantum Information, Vol. 2, Issue 1
High-Fidelity Rapid Initialization and Read-Out of an Electron Spin via the Single Donor Charge State
journal, October 2015
- Watson, T. F.; Weber, B.; House, M. G.
- Physical Review Letters, Vol. 115, Issue 16
Multiqubit gates protected by adiabaticity and dynamical decoupling applicable to donor qubits in silicon
journal, August 2015
- Witzel, Wayne M.; Montaño, Inès; Muller, Richard P.
- Physical Review B, Vol. 92, Issue 8
Conditional Control of Donor Nuclear Spins in Silicon Using Stark Shifts
journal, October 2014
- Wolfowicz, Gary; Urdampilleta, Matias; Thewalt, Mike L. W.
- Physical Review Letters, Vol. 113, Issue 15
Spin-valley lifetimes in a silicon quantum dot with tunable valley splitting
journal, June 2013
- Yang, C. H.; Rossi, A.; Ruskov, R.
- Nature Communications, Vol. 4, Issue 1
A reconfigurable gate architecture for Si/SiGe quantum dots
journal, June 2015
- Zajac, D. M.; Hazard, T. M.; Mi, X.
- Applied Physics Letters, Vol. 106, Issue 22
Silicon quantum electronics
journal, July 2013
- Zwanenburg, Floris A.; Dzurak, Andrew S.; Morello, Andrea
- Reviews of Modern Physics, Vol. 85, Issue 3
Works referencing / citing this record:
Single-spin qubits in isotopically enriched silicon at low magnetic field
journal, December 2019
- Zhao, R.; Tanttu, T.; Tan, K. Y.
- Nature Communications, Vol. 10, Issue 1
Fidelity benchmarks for two-qubit gates in silicon
journal, May 2019
- Huang, W.; Yang, C. H.; Chan, K. W.
- Nature, Vol. 569, Issue 7757
Figures / Tables found in this record: