skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Robust Bayesian Calibration of a k-ε Model for Compressible Jet-in-Crossflow Simulations

Abstract

Compressible jet-in-crossflow interactions are difficult to simulate accurately using Reynolds-averaged Navier–Stokes (RANS) models. This could be due to simplifications inherent in RANS or the use of inappropriate RANS constants estimated by fitting to experiments of simple or canonical flows. Our previous work on Bayesian calibration of a k-ε model to experimental data had led to a weak hypothesis that inaccurate simulations could be due to inappropriate constants more than model-form inadequacies of RANS. In this work, Bayesian calibration of k-ε constants to a set of experiments that span a range of Mach numbers and jet strengths has been performed. The variation of the calibrated constants has been checked to assess the degree to which parametric estimates compensate for RANS’s model-form errors. An analytical model of jet-in-crossflow interactions has also been developed, and estimates of k-ε constants that are free of any conflation of parametric and RANS’s model-form uncertainties have been obtained. It has been found that the analytical k-ε constants provide mean-flow predictions that are similar to those provided by the calibrated constants. Further, both of them provide predictions that are far closer to experimental measurements than those computed using “nominal” values of these constants simply obtained from the literature.more » It can be concluded that the lack of predictive skill of RANS jet-in-crossflow simulations is mostly due to parametric inadequacies, and our analytical estimates may provide a simple way of obtaining predictive compressible jet-in-crossflow simulations.« less

Authors:
 [1];  [2];  [2];  [3];  [2]
  1. Sandia National Lab. (SNL-CA), Livermore, CA (United States)
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  3. Citrine Informatics, Redwood City, CA (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA), Office of Defense Science (NA-113)
OSTI Identifier:
1478069
Report Number(s):
SAND-2018-7772J
Journal ID: ISSN 0001-1452; 665861
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
AIAA Journal
Additional Journal Information:
Journal Volume: 56; Journal Issue: 12; Journal ID: ISSN 0001-1452
Publisher:
AIAA
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING

Citation Formats

Ray, Jaideep, Dechant, Lawrence, Lefantzi, Sophia, Ling, Julia, and Arunajatesan, Srinivasan. Robust Bayesian Calibration of a k-ε Model for Compressible Jet-in-Crossflow Simulations. United States: N. p., 2018. Web. doi:10.2514/1.J057204.
Ray, Jaideep, Dechant, Lawrence, Lefantzi, Sophia, Ling, Julia, & Arunajatesan, Srinivasan. Robust Bayesian Calibration of a k-ε Model for Compressible Jet-in-Crossflow Simulations. United States. doi:10.2514/1.J057204.
Ray, Jaideep, Dechant, Lawrence, Lefantzi, Sophia, Ling, Julia, and Arunajatesan, Srinivasan. Fri . "Robust Bayesian Calibration of a k-ε Model for Compressible Jet-in-Crossflow Simulations". United States. doi:10.2514/1.J057204. https://www.osti.gov/servlets/purl/1478069.
@article{osti_1478069,
title = {Robust Bayesian Calibration of a k-ε Model for Compressible Jet-in-Crossflow Simulations},
author = {Ray, Jaideep and Dechant, Lawrence and Lefantzi, Sophia and Ling, Julia and Arunajatesan, Srinivasan},
abstractNote = {Compressible jet-in-crossflow interactions are difficult to simulate accurately using Reynolds-averaged Navier–Stokes (RANS) models. This could be due to simplifications inherent in RANS or the use of inappropriate RANS constants estimated by fitting to experiments of simple or canonical flows. Our previous work on Bayesian calibration of a k-ε model to experimental data had led to a weak hypothesis that inaccurate simulations could be due to inappropriate constants more than model-form inadequacies of RANS. In this work, Bayesian calibration of k-ε constants to a set of experiments that span a range of Mach numbers and jet strengths has been performed. The variation of the calibrated constants has been checked to assess the degree to which parametric estimates compensate for RANS’s model-form errors. An analytical model of jet-in-crossflow interactions has also been developed, and estimates of k-ε constants that are free of any conflation of parametric and RANS’s model-form uncertainties have been obtained. It has been found that the analytical k-ε constants provide mean-flow predictions that are similar to those provided by the calibrated constants. Further, both of them provide predictions that are far closer to experimental measurements than those computed using “nominal” values of these constants simply obtained from the literature. It can be concluded that the lack of predictive skill of RANS jet-in-crossflow simulations is mostly due to parametric inadequacies, and our analytical estimates may provide a simple way of obtaining predictive compressible jet-in-crossflow simulations.},
doi = {10.2514/1.J057204},
journal = {AIAA Journal},
number = 12,
volume = 56,
place = {United States},
year = {2018},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 1 work
Citation information provided by
Web of Science

Figures / Tables:

Fig. 1 Fig. 1: Left: Schematic of the wind-tunnel test section, which also serves as the computational domain. The orifice where the jet is introduces is also shown, as are the mid-plane and the cross-plane. Right: Contour plot of the vorticity field on the cross-plane slicing through the CVP. Positive vorticity ismore » plotted with red contours. We also plot a window $W$ where quantifications of vorticity will be performed in Sec. V.« less

Save / Share:

Works referenced in this record:

Bayesian Parameter Estimation of a k-ε Model for Accurate Jet-in-Crossflow Simulations
journal, August 2016

  • Ray, Jaideep; Lefantzi, Sophia; Arunajatesan, Srinivasan
  • AIAA Journal, Vol. 54, Issue 8
  • DOI: 10.2514/1.J054758

Vortex modeling of gaseous jets in a compressible crossflow
conference, February 2013


Machine Learning Models of Errors in Large Eddy Simulation Predictions of Surface Pressure Fluctuations
conference, June 2017

  • Barone, Matthew F.; Ling, Julia; Chowdhary, Kenny
  • 47th AIAA Fluid Dynamics Conference
  • DOI: 10.2514/6.2017-3979

A Bayesian Calibration–Prediction Method for Reducing Model-Form Uncertainties with Application in RANS Simulations
journal, March 2016


An analytical model for the vorticity associated with a transverse jet
journal, March 1986

  • Karagozian, A. R.
  • AIAA Journal, Vol. 24, Issue 3
  • DOI: 10.2514/3.9285

Robust Bayesian Calibration of a RANS Model for Jet-in-Crossflow Simulations
conference, June 2017

  • Ray, Jaideep; Lefantzi, Sophia; Arunajatesan, Srinivasan
  • 8th AIAA Theoretical Fluid Mechanics Conference
  • DOI: 10.2514/6.2017-4166

Crossplane Velocimetry of a Transverse Supersonic Jet in a Transonic Crossflow
journal, December 2006

  • Beresh, Steven J.; Henfling, John F.; Erven, Rocky J.
  • AIAA Journal, Vol. 44, Issue 12
  • DOI: 10.2514/1.22311

Vortex Structure Produced by a Laterally Inclined Supersonic Jet in Transonic Crossflow
journal, March 2007

  • Beresh, Steven J.; Henfling, John F.; Erven, Rocky J.
  • Journal of Propulsion and Power, Vol. 23, Issue 2
  • DOI: 10.2514/1.25444

Computation of turbulent axisymmetric and nonaxisymmetric jet flows using the K-epsilon model
journal, February 1996

  • Thies, Andrew T.; Tam, Christopher K. W.
  • AIAA Journal, Vol. 34, Issue 2
  • DOI: 10.2514/3.13065

Learning an Eddy Viscosity Model Using Shrinkage and Bayesian Calibration: A Jet-in-Crossflow Case Study
journal, September 2017

  • Ray, Jaideep; Lefantzi, Sophia; Arunajatesan, Srinivasan
  • ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg, Vol. 4, Issue 1
  • DOI: 10.1115/1.4037557

Bayesian uncertainty analysis with applications to turbulence modeling
journal, September 2011

  • Cheung, Sai Hung; Oliver, Todd A.; Prudencio, Ernesto E.
  • Reliability Engineering & System Safety, Vol. 96, Issue 9
  • DOI: 10.1016/j.ress.2010.09.013

Reynolds averaged turbulence modelling using deep neural networks with embedded invariance
journal, October 2016

  • Ling, Julia; Kurzawski, Andrew; Templeton, Jeremy
  • Journal of Fluid Mechanics, Vol. 807
  • DOI: 10.1017/jfm.2016.615

Transverse jets and jet flames. Part 1. Scaling laws for strong transverse jets
journal, September 2001


Improvement of k-epsilon turbulence model for CFD simulation of atmospheric boundary layer around a high-rise building using stochastic optimization and Monte Carlo Sampling technique
journal, December 2017

  • Shirzadi, Mohammadreza; Mirzaei, Parham A.; Naghashzadegan, Mohammad
  • Journal of Wind Engineering and Industrial Aerodynamics, Vol. 171
  • DOI: 10.1016/j.jweia.2017.10.005

A novel evolutionary algorithm applied to algebraic modifications of the RANS stress–strain relationship
journal, November 2016


Turbulent Characteristics of a Transverse Supersonic Jet in a Subsonic Compressible Crossflow
journal, November 2005

  • Beresh, Steven J.; Henfling, John F.; Erven, Rocky J.
  • AIAA Journal, Vol. 43, Issue 11
  • DOI: 10.2514/1.14575

Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data
journal, March 2017


Experiments and Computations of Roll Torque Induced by Vortex-Fin Interaction
conference, June 2012

  • Peterson, Carl; Wolfe, Walter; Payne, Jeffrey
  • 42nd AIAA Aerospace Sciences Meeting and Exhibit
  • DOI: 10.2514/6.2004-1069

K-ε Turbulence Model Parameter Estimates Using an Approximate Self-similar Jet-in-Crossflow Solution
conference, June 2017

  • DeChant, Lawrence J.; Ray, Jaideep; Lefantzi, Sophia
  • 8th AIAA Theoretical Fluid Mechanics Conference
  • DOI: 10.2514/6.2017-4167

Bayesian estimates of parameter variability in the k–ε turbulence model
journal, February 2014


Evaluation of Two-Equations RANS Models for Simulation of Jet-in-Crossflow Problems
conference, November 2012

  • Arunajatesan, Srinivasan
  • 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition
  • DOI: 10.2514/6.2012-1199

Application of a Reynolds stress turbulence model to the compressible shear layer
journal, May 1991

  • Sarkar, S.; Lakshmanan, B.
  • AIAA Journal, Vol. 29, Issue 5
  • DOI: 10.2514/3.10649

Structure and mixing of a transverse jet in incompressible flow
journal, November 1984


Optimization of Parameter Values in the Turbulence Model Aided by Data Assimilation
journal, May 2016

  • Kato, Hiroshi; Ishiko, Keiichi; Yoshizawa, Akira
  • AIAA Journal, Vol. 54, Issue 5
  • DOI: 10.2514/1.J054109

A Machine Learning Approach for Determining the Turbulent Diffusivity in Film Cooling Flows
journal, December 2017

  • Milani, Pedro M.; Ling, Julia; Saez-Mischlich, Gonzalo
  • Journal of Turbomachinery, Vol. 140, Issue 2
  • DOI: 10.1115/1.4038275

DRAM: Efficient adaptive MCMC
journal, December 2006


Quantification of Structural Uncertainties in the k -w Turbulence Model
conference, June 2012

  • Dow, Eric; Wang, Qiqi
  • 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
  • DOI: 10.2514/6.2011-1762

The Interaction of Jets with Crossflow
journal, January 2013


Inverse Modelling, Sensitivity and Monte Carlo Analysis in R Using Package FME
journal, January 2010

  • Soetaert, Karline; Petzoldt, Thomas
  • Journal of Statistical Software, Vol. 33, Issue 3
  • DOI: 10.18637/jss.v033.i03

An explanation of the turbulent round-jet/plane-jet anomaly
journal, March 1978


A paradigm for data-driven predictive modeling using field inversion and machine learning
journal, January 2016


Machine-Learning-Augmented Predictive Modeling of Turbulent Separated Flows over Airfoils
journal, July 2017

  • Singh, Anand Pratap; Medida, Shivaji; Duraisamy, Karthik
  • AIAA Journal, Vol. 55, Issue 7
  • DOI: 10.2514/1.J055595

Bayesian calibration of the constants of the <mml:math altimg="si13.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mi>k</mml:mi></mml:math>–<mml:math altimg="si14.gif" display="inline" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:mi>ε</mml:mi></mml:math> turbulence model for a CFD model of street canyon flow
journal, September 2014

  • Guillas, Serge; Glover, Nina; Malki-Epshtein, Liora
  • Computer Methods in Applied Mechanics and Engineering, Vol. 279
  • DOI: 10.1016/j.cma.2014.06.008

Planar Velocimetry of Jet/Fin Interaction on a Full-Scale Flight Vehicle Configuration
journal, August 2007

  • Beresh, Steven J.; Heineck, James T.; Walker, Stephen M.
  • AIAA Journal, Vol. 45, Issue 8
  • DOI: 10.2514/1.26485

Scalar Fluctuation Modeling for High-Speed Aeropropulsive Flows
journal, May 2007

  • Brinckman, Kevin W.; Calhoon, William H.; Dash, Sanford M.
  • AIAA Journal, Vol. 45, Issue 5
  • DOI: 10.2514/1.21075

Penetration of a Transverse Supersonic Jet into a Subsonic Compressible Crossflow
journal, February 2005

  • Beresh, Steven J.; Henfling, John F.; Erven, Rocky J.
  • AIAA Journal, Vol. 43, Issue 2
  • DOI: 10.2514/1.9919

Uncertainty Analysis and Data-Driven Model Advances for a Jet-in-Crossflow
journal, October 2016

  • Ling, Julia; Ruiz, Anthony; Lacaze, Guilhem
  • Journal of Turbomachinery, Vol. 139, Issue 2
  • DOI: 10.1115/1.4034556

Predictive RANS simulations via Bayesian Model-Scenario Averaging
journal, October 2014


Data-Free and Data-Driven RANS Predictions with Quantified Uncertainty
journal, November 2017

  • Edeling, W. N.; Iaccarino, G.; Cinnella, P.
  • Flow, Turbulence and Combustion, Vol. 100, Issue 3
  • DOI: 10.1007/s10494-017-9870-6