skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Design considerations for indirectly driven double shell capsules

Abstract

Here, double shell capsules are predicted to ignite and burn at relatively low temperature (~3 keV) via volume ignition and are a potential low-convergence path to substantial α-heating and possibly ignition at the National Ignition Facility. Double shells consist of a dense, high-Z pusher, which first shock heats and then performs work due to changes in pressure and volume (PdV work) on deuterium-tritium gas, bringing the entire fuel volume to high pressure thermonuclear conditions near implosion stagnation. The high-Z pusher is accelerated via a shock and subsequent compression of an intervening foam cushion by an ablatively driven low-Z outer shell. A broad capsule design parameter space exists due to the inherent flexibility of potential materials for the outer and inner shells and foam cushion. This is narrowed down by design physics choices and the ability to fabricate and assemble the separate pieces forming a double shell capsule. We describe the key physics for good double shell performance, the trade-offs in various design choices, and the challenges for capsule fabrication. Finally, both 1D and 2D calculations from radiation-hydrodynamic simulations are presented.

Authors:
 [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [1];  [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [1];  [2];  [2];  [2];  [2];  [2]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1477699
Alternate Identifier(s):
OSTI ID: 1474202
Report Number(s):
LA-UR-18-24347
Journal ID: ISSN 1070-664X
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 25; Journal Issue: 9; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; thermodynamic properties; plasma confinement; hydrodynamics simulations

Citation Formats

Montgomery, D. S., Daughton, W. S., Albright, B. J., Simakov, A. N., Wilson, D. C., Dodd, E. S., Kirkpatrick, R. C., Watt, R. G., Gunderson, M. A., Loomis, E. N., Merritt, E. C., Cardenas, T., Amendt, P., Milovich, J. L., Robey, H. F., Tipton, R. E., and Rosen, M. D. Design considerations for indirectly driven double shell capsules. United States: N. p., 2018. Web. doi:10.1063/1.5042478.
Montgomery, D. S., Daughton, W. S., Albright, B. J., Simakov, A. N., Wilson, D. C., Dodd, E. S., Kirkpatrick, R. C., Watt, R. G., Gunderson, M. A., Loomis, E. N., Merritt, E. C., Cardenas, T., Amendt, P., Milovich, J. L., Robey, H. F., Tipton, R. E., & Rosen, M. D. Design considerations for indirectly driven double shell capsules. United States. doi:10.1063/1.5042478.
Montgomery, D. S., Daughton, W. S., Albright, B. J., Simakov, A. N., Wilson, D. C., Dodd, E. S., Kirkpatrick, R. C., Watt, R. G., Gunderson, M. A., Loomis, E. N., Merritt, E. C., Cardenas, T., Amendt, P., Milovich, J. L., Robey, H. F., Tipton, R. E., and Rosen, M. D. Thu . "Design considerations for indirectly driven double shell capsules". United States. doi:10.1063/1.5042478. https://www.osti.gov/servlets/purl/1477699.
@article{osti_1477699,
title = {Design considerations for indirectly driven double shell capsules},
author = {Montgomery, D. S. and Daughton, W. S. and Albright, B. J. and Simakov, A. N. and Wilson, D. C. and Dodd, E. S. and Kirkpatrick, R. C. and Watt, R. G. and Gunderson, M. A. and Loomis, E. N. and Merritt, E. C. and Cardenas, T. and Amendt, P. and Milovich, J. L. and Robey, H. F. and Tipton, R. E. and Rosen, M. D.},
abstractNote = {Here, double shell capsules are predicted to ignite and burn at relatively low temperature (~3 keV) via volume ignition and are a potential low-convergence path to substantial α-heating and possibly ignition at the National Ignition Facility. Double shells consist of a dense, high-Z pusher, which first shock heats and then performs work due to changes in pressure and volume (PdV work) on deuterium-tritium gas, bringing the entire fuel volume to high pressure thermonuclear conditions near implosion stagnation. The high-Z pusher is accelerated via a shock and subsequent compression of an intervening foam cushion by an ablatively driven low-Z outer shell. A broad capsule design parameter space exists due to the inherent flexibility of potential materials for the outer and inner shells and foam cushion. This is narrowed down by design physics choices and the ability to fabricate and assemble the separate pieces forming a double shell capsule. We describe the key physics for good double shell performance, the trade-offs in various design choices, and the challenges for capsule fabrication. Finally, both 1D and 2D calculations from radiation-hydrodynamic simulations are presented.},
doi = {10.1063/1.5042478},
journal = {Physics of Plasmas},
number = 9,
volume = 25,
place = {United States},
year = {2018},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Figures / Tables:

Table 1 Table 1: performance trade‐offs between double shell (volume ignition) capsules and single shell (central hot spot ignition) capsules.

Save / Share:

Works referenced in this record:

The National Ignition Facility - applications for inertial fusion energy and high-energy-density science
journal, December 1999


Ignition on the National Ignition Facility
journal, May 2008


The physics basis for ignition using indirect-drive targets on the National Ignition Facility
journal, February 2004

  • Lindl, John D.; Amendt, Peter; Berger, Richard L.
  • Physics of Plasmas, Vol. 11, Issue 2
  • DOI: 10.1063/1.1578638

Plastic ablator ignition capsule design for the National Ignition Facility
journal, May 2010

  • Clark, Daniel S.; Haan, Steven W.; Hammel, Bruce A.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3403293

Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility
journal, May 2011

  • Haan, S. W.; Lindl, J. D.; Callahan, D. A.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3592169

Three-dimensional simulations of low foot and high foot implosion experiments on the National Ignition Facility
journal, March 2016

  • Clark, D. S.; Weber, C. R.; Milovich, J. L.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4943527

Fuel gain exceeding unity in an inertially confined fusion implosion
journal, February 2014

  • Hurricane, O. A.; Callahan, D. A.; Casey, D. T.
  • Nature, Vol. 506, Issue 7488
  • DOI: 10.1038/nature13008

Progress toward Ignition with Noncryogenic Double-Shell Capsules
journal, May 2000


Indirect-drive noncryogenic double-shell ignition targets for the National Ignition Facility: Design and analysis
journal, May 2002

  • Amendt, Peter; Colvin, J. D.; Tipton, R. E.
  • Physics of Plasmas, Vol. 9, Issue 5
  • DOI: 10.1063/1.1459451

Multimode short-wavelength perturbation growth studies for the National Ignition Facility double-shell ignition target designs
journal, April 2004

  • Milovich, J. L.; Amendt, P.; Marinak, M.
  • Physics of Plasmas, Vol. 11, Issue 4
  • DOI: 10.1063/1.1646161

High-mode Rayleigh-Taylor growth in NIF ignition capsules
journal, June 2010


Shock timing measurements and analysis in deuterium-tritium-ice layered capsule implosions on NIF
journal, February 2014

  • Robey, H. F.; Celliers, P. M.; Moody, J. D.
  • Physics of Plasmas, Vol. 21, Issue 2
  • DOI: 10.1063/1.4863975

Alternative hot spot formation techniques using liquid deuterium-tritium layer inertial confinement fusion capsules
journal, September 2013

  • Olson, R. E.; Leeper, R. J.
  • Physics of Plasmas, Vol. 20, Issue 9
  • DOI: 10.1063/1.4822342

Acceleration and deceleration model of indirect drive ICF capsules
journal, November 2006


Three-dimensional HYDRA simulations of National Ignition Facility targets
journal, May 2001

  • Marinak, M. M.; Kerbel, G. D.; Gentile, N. A.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1356740

HELIOS-CR – A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling
journal, May 2006

  • MacFarlane, J. J.; Golovkin, I. E.; Woodruff, P. R.
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 99, Issue 1-3
  • DOI: 10.1016/j.jqsrt.2005.05.031

Deceleration phase of inertial confinement fusion implosions
journal, May 2002

  • Betti, R.; Anderson, K.; Goncharov, V. N.
  • Physics of Plasmas, Vol. 9, Issue 5
  • DOI: 10.1063/1.1459458

Low Fuel Convergence Path to Direct-Drive Fusion Ignition
journal, June 2016


Escape of α Particles from a Laser-Pulse-Initiated Thermonuclear Reaction
journal, April 1973


The physics of DT ignition in small fusion targets
journal, March 1981


Alpha particle energy absorption in a reacting DT sphere
journal, January 1975

  • Cooper, Ralph S.; Evans, Foster
  • Physics of Fluids, Vol. 18, Issue 3
  • DOI: 10.1063/1.861142

Toward the Fabrication of a NIF Target via Hemisphere Joining
journal, March 1999


Application of fall-line mix models to understand degraded yield
journal, July 2008

  • Welser-Sherrill, L.; Cooley, J. H.; Haynes, D. A.
  • Physics of Plasmas, Vol. 15, Issue 7
  • DOI: 10.1063/1.2953215

A new quotidian equation of state (QEOS) for hot dense matter
journal, January 1988

  • More, R. M.; Warren, K. H.; Young, D. A.
  • Physics of Fluids, Vol. 31, Issue 10
  • DOI: 10.1063/1.866963

Thermonuclear burn characteristics of compressed deuterium-tritium microspheres
journal, January 1974


A consistent approach to solving the radiation diffusion equation
journal, May 2003

  • Hammer, James H.; Rosen, Mordecai D.
  • Physics of Plasmas, Vol. 10, Issue 5
  • DOI: 10.1063/1.1564599

    Works referencing / citing this record:

    Convergent Richtmyer–Meshkov instability of light gas layer with perturbed outer surface
    journal, December 2019

    • Li, Jianming; Ding, Juchun; Si, Ting
    • Journal of Fluid Mechanics, Vol. 884
    • DOI: 10.1017/jfm.2019.989

    Experimental study of energy transfer in double shell implosions
    journal, May 2019

    • Merritt, E. C.; Sauppe, J. P.; Loomis, E. N.
    • Physics of Plasmas, Vol. 26, Issue 5
    • DOI: 10.1063/1.5086674

    First experiments on Revolver shell collisions at the OMEGA laser
    journal, July 2019

    • Scheiner, Brett; Schmitt, Mark J.; Hsu, Scott C.
    • Physics of Plasmas, Vol. 26, Issue 7
    • DOI: 10.1063/1.5099975

    Computational study of instability and fill tube mitigation strategies for double shell implosions
    journal, October 2019

    • Haines, Brian M.; Daughton, W. S.; Loomis, E. N.
    • Physics of Plasmas, Vol. 26, Issue 10
    • DOI: 10.1063/1.5115031

    Direct-drive double-shell implosion: A platform for burning-plasma physics studies
    journal, December 2019


      Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.