skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Design considerations for indirectly driven double shell capsules

Abstract

Here, double shell capsules are predicted to ignite and burn at relatively low temperature (~3 keV) via volume ignition and are a potential low-convergence path to substantial α-heating and possibly ignition at the National Ignition Facility. Double shells consist of a dense, high-Z pusher, which first shock heats and then performs work due to changes in pressure and volume (PdV work) on deuterium-tritium gas, bringing the entire fuel volume to high pressure thermonuclear conditions near implosion stagnation. The high-Z pusher is accelerated via a shock and subsequent compression of an intervening foam cushion by an ablatively driven low-Z outer shell. A broad capsule design parameter space exists due to the inherent flexibility of potential materials for the outer and inner shells and foam cushion. This is narrowed down by design physics choices and the ability to fabricate and assemble the separate pieces forming a double shell capsule. We describe the key physics for good double shell performance, the trade-offs in various design choices, and the challenges for capsule fabrication. Finally, both 1D and 2D calculations from radiation-hydrodynamic simulations are presented.

Authors:
 [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [1];  [1];  [1];  [1]; ORCiD logo [1]; ORCiD logo [1];  [2];  [2];  [2];  [2];  [2]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1477699
Alternate Identifier(s):
OSTI ID: 1474202
Report Number(s):
LA-UR-18-24347
Journal ID: ISSN 1070-664X
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 25; Journal Issue: 9; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; thermodynamic properties; plasma confinement; hydrodynamics simulations

Citation Formats

Montgomery, D. S., Daughton, W. S., Albright, B. J., Simakov, A. N., Wilson, D. C., Dodd, E. S., Kirkpatrick, R. C., Watt, R. G., Gunderson, M. A., Loomis, E. N., Merritt, E. C., Cardenas, T., Amendt, P., Milovich, J. L., Robey, H. F., Tipton, R. E., and Rosen, M. D. Design considerations for indirectly driven double shell capsules. United States: N. p., 2018. Web. doi:10.1063/1.5042478.
Montgomery, D. S., Daughton, W. S., Albright, B. J., Simakov, A. N., Wilson, D. C., Dodd, E. S., Kirkpatrick, R. C., Watt, R. G., Gunderson, M. A., Loomis, E. N., Merritt, E. C., Cardenas, T., Amendt, P., Milovich, J. L., Robey, H. F., Tipton, R. E., & Rosen, M. D. Design considerations for indirectly driven double shell capsules. United States. doi:10.1063/1.5042478.
Montgomery, D. S., Daughton, W. S., Albright, B. J., Simakov, A. N., Wilson, D. C., Dodd, E. S., Kirkpatrick, R. C., Watt, R. G., Gunderson, M. A., Loomis, E. N., Merritt, E. C., Cardenas, T., Amendt, P., Milovich, J. L., Robey, H. F., Tipton, R. E., and Rosen, M. D. Thu . "Design considerations for indirectly driven double shell capsules". United States. doi:10.1063/1.5042478. https://www.osti.gov/servlets/purl/1477699.
@article{osti_1477699,
title = {Design considerations for indirectly driven double shell capsules},
author = {Montgomery, D. S. and Daughton, W. S. and Albright, B. J. and Simakov, A. N. and Wilson, D. C. and Dodd, E. S. and Kirkpatrick, R. C. and Watt, R. G. and Gunderson, M. A. and Loomis, E. N. and Merritt, E. C. and Cardenas, T. and Amendt, P. and Milovich, J. L. and Robey, H. F. and Tipton, R. E. and Rosen, M. D.},
abstractNote = {Here, double shell capsules are predicted to ignite and burn at relatively low temperature (~3 keV) via volume ignition and are a potential low-convergence path to substantial α-heating and possibly ignition at the National Ignition Facility. Double shells consist of a dense, high-Z pusher, which first shock heats and then performs work due to changes in pressure and volume (PdV work) on deuterium-tritium gas, bringing the entire fuel volume to high pressure thermonuclear conditions near implosion stagnation. The high-Z pusher is accelerated via a shock and subsequent compression of an intervening foam cushion by an ablatively driven low-Z outer shell. A broad capsule design parameter space exists due to the inherent flexibility of potential materials for the outer and inner shells and foam cushion. This is narrowed down by design physics choices and the ability to fabricate and assemble the separate pieces forming a double shell capsule. We describe the key physics for good double shell performance, the trade-offs in various design choices, and the challenges for capsule fabrication. Finally, both 1D and 2D calculations from radiation-hydrodynamic simulations are presented.},
doi = {10.1063/1.5042478},
journal = {Physics of Plasmas},
number = 9,
volume = 25,
place = {United States},
year = {2018},
month = {9}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share: